Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Talanta ; 252: 123844, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36001900

RESUMEN

In this paper, the main subject concerns comparing different techniques to prepare raw clay samples for energy-dispersive X-ray fluorescence spectrometry (EDXRF). Three kinds of sample preparation procedures are examined, such as loose powder, pressed pellet, and fired pressed pellet. The fired pressed pellet approach was observed as a part of universal sample preparation for physic, mechanical, and instrumental analysis, which has not been previously tested as a solution in chemical analysis by the EDXRF method. The observed sample preparation techniques were compared by calculating the parameters of validation (recoveries, limit of detection - LOD, limit of quantification - LOQ, precision, and expanded uncertainties of measurements) of 11 elements (Si, Al, Fe, Ca, Mg, K, Na, Ti, P, Mn, and S) using 15 certified reference materials (CRMs). Calibration curves were created and evaluated using 30 reference materials (RM) for all three approaches. Results proved that the fired pressed pellet is the most practical and precise approach for sample preparation of raw clays.


Asunto(s)
Arcilla , Rayos X , Cromatografía de Gases y Espectrometría de Masas , Espectrometría por Rayos X/métodos , Calibración
2.
Materials (Basel) ; 16(6)2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36984322

RESUMEN

To combat environmental challenges-such as the depletion of natural resources and a high carbon footprint-and contribute to the effort of achieving zero-waste technology and sustainable development, the use of agricultural and industrial wastes in the cement industry has created a research interest. This study explores the potential of two types of harvest residue ash (HRA) and three types of ceramic waste (CP) as supplementary cementitious materials (SCMs) through: (1) the characterization of raw materials and (2) examining the physical properties and mechanical performance of cement-based mortar samples prepared with 10%, 30% and 50%wt of the selected SCMs ground into powder form as cement replacement. Two main variables were the water-to-binder ratio (w/b) and the effect of different grinding procedures. Experimental results demonstrated that flexural and compressive strengths were not significantly impaired by SCM additions of up to 50%, but higher replacement levels led to an increased permeability and higher capillary water absorption due to the dilution effect. Also, a lower w/b was shown to effectively reduce the porosity of mortar and increase its mechanical properties, allowing for higher shares of SCMs to be utilized. This study verifies the technical feasibility of cob corn ash and ceramic powder application as SCMs in mortar formulations, further promoting the practice of incorporating industrial and agricultural by-products in greener cementitious composites.

3.
Phys Chem Chem Phys ; 14(28): 10027-31, 2012 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-22710374

RESUMEN

Graphite modified with gallic acid to form 'gallic acid-carbon' is demonstrated to be efficient for the removal of bismuth(III) ions from aqueous solutions. The uptake is demonstrated to be rapid but not to follow standard adsorption isotherm models. Instead, the uptake was found to be further promoted by the presence of the adsorbed metal. Additionally, the bismuth uptake showed linear dependence on the square of its concentration suggesting the possible formation of polymeric bismuth species. The gallic acid-carbon shows great promise as a relatively inexpensive material for solid-phase extraction and water purification with extraction efficiency close to 98%.

4.
Environ Monit Assess ; 184(1): 335-41, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21409362

RESUMEN

Arsenic is a toxic and carcinogenic element. Its toxicity depends on its oxidation state and its concentration. The aim of this paper is to determine, for the first time, the concentration levels of arsenic in water and sediment during the spring/summer period of 2009 in Sevojno, a region in West Serbia with a long industrial tradition, as well as to determine the model of arsenic distribution in water/sediment system and the level of its compatibility with the existing theoretical model. Adsorption is a continual process in the environment. It plays a very important role in the transport and fate of pollutants, especially in sediment. The adsorption of arsenic was examined using the Freundlich adsorption isotherm.


Asunto(s)
Arsénico/química , Sedimentos Geológicos/química , Agua/química , Monitoreo del Ambiente , Estaciones del Año , Factores de Tiempo
5.
Materials (Basel) ; 15(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35591478

RESUMEN

One of the significant problems in the production of ceramic tiles is the very high consumption of natural resources such as clay, feldspar, and quartz. The possibility of replacing part of the formulation of ceramic batches is of great importance. In this research, the possibility of using aplitic granite waste from dimensional stone production was analyzed in detail. The waste is considered a low-cost substitute for feldspar in Serbia. The milled powdery waste was analytically tested to reveal its chemical and mineralogical contents, particle size distribution, and other important properties. The ceramic tiles containing aplitic granite waste (GW) and GW/raw clay mixture (CGW) were hydraulically pressed, and the ceramic and technological properties determined. This waste can act as a filler while forming, drying, and firing, since the high content of quartz helps to control the shrinkage and acts as a fluxing agent in high temperatures due to its feldspathic nature. The waste was found favorable in the production of ceramic tiles, as the gained values of modulus of rupture and water absorption were 28.68 MPa and 1.33%, respectively. The parameters defined in the series of standards EN ISO 10545 were tested on a semi-industrial probe, determining that this combination of materials (without the addition of quartz) may be efficiently used to produce ceramic floor tiles. The usage of what would otherwise be waste material contributes to sustainable management and environmentally friendly solutions by avoiding landfilling, while at the same time it enabling the conservation of scarce natural feldspar deposits.

6.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014632

RESUMEN

Vanadium-oxide-based materials exist with various vanadium oxidation states having rich chemistry and ability to form layered structures. These properties make them suitable for different applications, including energy conversion and storage. Magnesium vanadium oxide materials obtained using simple preparation route were studied as potential cathodes for rechargeable aqueous magnesium ion batteries. Structural characterization of the synthesized materials was performed using XRD and vibrational spectroscopy techniques (FTIR and Raman spectroscopy). Electrochemical behavior of the materials, observed by cyclic voltammetry, was further explained by BVS calculations. Sluggish Mg2+ ion kinetics in MgV2O6 was shown as a result of poor electronic and ionic wiring. Complex redox behavior of the studied materials is dependent on phase composition and metal ion inserted/deinserted into/from the material. Among the studied magnesium vanadium oxides, the multiphase oxide systems exhibited better Mg2+ insertion/deinsertion performances than the single-phase ones. Carbon addition was found to be an effective dual strategy for enhancing the charge storage behavior of MgV2O6.

7.
Materials (Basel) ; 16(1)2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36614601

RESUMEN

The European Green Deal, which emphasizes zero-waste economies, and waste recycling in construction and building materials, has arisen due to significant worldwide needs for solid waste recovery and usage. This ambitious study focuses on recycling mixed construction and demolition (C&D) waste into burnt bricks and investigating the influence of firing temperature. While pursuing its objectives, this is dependent on raw material characterization and burnt-brick product quality assessment. The recycling of mixed C&D waste is explored by mixing the waste into two soil types (alluvial and laterite) in ratios ranging from 5% to 45% at three firing temperatures (700 °C, 850 °C and 900 °C). The utilization of mixed C&D waste in amounts of 10% at 700 °C and 25% at 850 °C and 900 °C fulfilled the Indian standard. Although a fire at 700 °C results in less optimal waste utilization, it is beneficial and recommended for reducing the carbon footprint and energy use. Additional mineralogical and microstructural analyzes are performed on the optimal fired samples. The study's findings are promising for sustainable resource usage, reducing carbon footprint, and reducing waste disposal volume. This research is a big step toward the Sustainable Development Goals of the United Nations and a circular economy.

8.
Environ Sci Pollut Res Int ; 28(38): 53629-53652, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34031837

RESUMEN

Surface sediments collected from twelve stations in the Boka Kotorska Bay were analyzed for the level and distribution of twenty-six elements and ten oxides, grain sizes, organic matter, and carbonate content. Potentially toxic elements (Al, Fe, Mn, Cr, Zn, Ni, Cu, Pb, As, Co, U) were determined to assess the contamination status and potential environmental risk according to the single-element indices (enrichment factor (EF), geoaccumulation index (Igeo), contamination factor (CF)), and combined index (pollution load index (PLI)). The single-element indices EF and CF revealed that the surface marine sediment was moderately polluted with Pb, Cu, and Cr, while Igeo indicated moderate pollution with Ni > Cr > Zn > Cu > As and moderate to heavy pollution with Pb, as a result of the anthropogenic factors. The method of the combined effect of toxic elements, PLI, showed the highest pollution rate at the shipyard location in the Bay of Tivat. Pearson's correlation coefficient (r), principal component analysis (PCA), and cluster analysis (CA) were applied to highlight similarities and differences in the distribution of the investigated elements in the Bay, confirming the claim obtained by the pollution indices. The sediment contamination with most heavy metals, such as Cr, Zn, Ni, Cu, Pb, and As, has been identified in the Tivat Bay area.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Montenegro , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
9.
Chemosphere ; 86(6): 585-92, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22094049

RESUMEN

Snow samples were collected near crossroads in Novi Sad, Serbia, during December 2009 to assess metal concentrations (Ca, K, Zn, Fe, Cu, Mn, Al, Pb and Na), fine particle distribution and pH value. The filtered samples of melted snow were analysed, with a focus on particles smaller than a few µm. The most common values of the frequency number distribution curve were either in the range of 0.05-0.07 µm or one order of magnitude higher (0.2-0.5 µm). At examined locations metal concentrations varied from 0.0004 mg L(-1) for Pb to 18.9 mg L(-1) for Na. Besides Na, which mostly originated from de-icing salt, Ca is found to be the most abundant element in snow indicating the dominant influence of natural factors on snow chemistry. No significant difference was found in concentration of the elements at locations near crossroads with either low or high traffic volume, except for Na and Zn. To investigate how metals were related a correlation analysis was done for the concentrations of metals and with respect to the particle size distribution parameters and pH values. The major influence on the fine particle volume (mass) was concluded to be due to the elements from anthropogenic sources. This conclusion was based on the significant positive correlation between Fe, Zn and Al and the fine particle volume based distribution parameters.


Asunto(s)
Ciudades , Metales/análisis , Tamaño de la Partícula , Nieve/química , Concentración de Iones de Hidrógeno , Transición de Fase , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda