Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Exp Appl Acarol ; 80(4): 491-507, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32144638

RESUMEN

Water mites are important constituents of aquatic ecosystems, but their biodiversity is poorly understood. The goal of this study was to improve knowledge of water mite assemblages in the Detroit River through combined use of morphological and cytochrome oxidase I (COI) DNA barcode data and to elucidate seasonal water mite diversity. The diversity of water mites collected from Blue Heron Lagoon at Belle Isle, an island in the Detroit River, is described. Novel DNA barcodes for Albia, Hydrochoreutes, Madawaska, and Axonopsis are reported with a species level barcode for Lebertia. Novel DNA barcodes may represent the presence of previously undescribed variants or new species of several genera. The prevalence of water mites is higher in the summer, but a different pattern is observed for diversity. The diversity of water mites, by several measures, varies seasonally with lower diversity in summer and winter months and higher diversity during seasonal transitions. For these organisms, we interpret seasonal change as an intermediate disturbance resulting in increased biodiversity.


Asunto(s)
Código de Barras del ADN Taxonómico , Ácaros/clasificación , Ríos , Animales , Biodiversidad , Ecosistema , Michigan
2.
J Great Lakes Res ; 42(4): 802-811, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27713595

RESUMEN

In the Laurentian Great Lakes, specimens of Eurytemora have been reported as E. affinis since its invasion in the late 1950s. During an intensive collection of aquatic invertebrates for morphological and molecular identification in Western Lake Erie in 2012-2013, several specimens of Eurytemora were collected. Analysis of these specimens identified them as the recently described species E. carolleeae Alekseev and Souissi 2011. This result led us to assess E. carolleeae's identifying features, geographic distribution and historical presence in the Laurentian Great Lakes in view of its recent description in 2011. Cytochrome oxidase I (COI) DNA sequences of Eurytemora specimens were identified as closer (2 - 4% different) to recently described E. carolleeae than to most Eurytemora affinis sequences (14% different). Eurytemora from other areas of the Great Lakes and from North American rivers as far west as South Dakota (Missouri River) and east to Delaware (Christina River) also keyed to E. carolleeae. Morphological analysis of archival specimens from 1962 and from all the Great Lakes were identified as E. carolleeae. Additionally, Eurytemora drawings in previous publications from studies in the Holarctic region were reassessed to determine if these specimens were E. carolleeae. Additional morphological characters that may distinguish the North American E. carolleeae from other taxa are also described. We conclude that E. carolleeae is the correct name for the species of Eurytemora that has inhabited the Great Lakes since its invasion, as established by both morphological and COI sequence comparisons to reference keys and sequence databases in present and archival specimens.

3.
Zookeys ; 1208: 133-163, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108338

RESUMEN

In this study, the biodiversity of Chironomidae was investigated in Palmer Park Pond A, an urban vernal pond in Detroit, Michigan, USA. This study is developed as part of our ongoing Public Environmental Outreach Program at the Detroit Exploration and Nature Center in Palmer Park. Twenty-one Chironomidae species were discovered in and on the adjacent riparian vegetation of this pond using molecular and morphological methods. Three species Bryophaenocladiuspalmerparcum Namayandeh & Hudson sp. nov., Limnophyesstagnum Namayandeh, Guerra & Ram sp. nov., and Rheocricotopus (s. s.) angustus Namayandeh & Hudson sp. nov. are new to science. Bryophaenocladiuspalmerparcum sp. nov. and L.stagnum sp. nov. are unusual Orthoclads, with B.palmerparcum sp. nov. possessing a setose, short, and wide anal point and L.stagnum sp. nov. lacking lanceolate setae on both sexes. Based on the shape of superior volsella, R.angustus sp. nov., belongs to the effusus group, which was also confirmed by DNA barcoding molecular analysis. In this study, a new faunistic record was also found for the Nearctic as well as four new faunistic records for the state of Michigan. Ephemeral aquatic habitats such as vernal pools are often overlooked or destroyed by urbanization activities, controlling vector species, creating groomed fields, and/or residential development. Therefore, finding these new species demonstrates the biodiversity value of vernal ponds as important habitats, further motivating us to preserve them.

4.
Zootaxa ; 5325(4): 571-581, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38220892

RESUMEN

We describe a new genus Alaskacladius gen. nov., based on the adult stages collected from Alaska, USA, and British Columbia, Canada. Molecular and morphological assessment of adult specimens supports the presence of a new genus. Alaskacladius gen. nov., is related to the genera Doithrix Sther & Sublette, 1983; Georthocladius Strenzke, 1941; Parachaetocladius Wlker, 1959; and Pseudorthocladius Goetghebuer, 1932. Based on the molecular analysis result and intergeneric K2P distance obtained from Cytochrome Oxidase I (COI) genes, Alaskacladius is closest and forms a sister group with Doithrix.


Asunto(s)
Chironomidae , Dípteros , Animales , Chironomidae/genética , Alaska , Filogenia
5.
Artículo en Inglés | MEDLINE | ID: mdl-37681792

RESUMEN

The public health emergency caused by the COVID-19 pandemic stimulated stakeholders from diverse disciplines and institutions to establish new collaborations to produce informed public health responses to the disease. Wastewater-based epidemiology for COVID-19 grew quickly during the pandemic and required the rapid implementation of such collaborations. The objective of this article is to describe the challenges and results of new relationships developed in Detroit, MI, USA among a medical school and an engineering college at an academic institution (Wayne State University), the local health department (Detroit Health Department), and an environmental services company (LimnoTech) to utilize markers of the COVID-19 virus, SARS-CoV-2, in wastewater for the goal of managing COVID-19 outbreaks. Our collaborative team resolved questions related to sewershed selection, communication of results, and public health responses and addressed technical challenges that included ground-truthing the sewer maps, overcoming supply chain issues, improving the speed and sensitivity of measurements, and training new personnel to deal with a new disease under pandemic conditions. Recognition of our complementary roles and clear communication among the partners enabled city-wide wastewater data to inform public health responses within a few months of the availability of funding in 2020, and to make improvements in sensitivity and understanding to be made as the pandemic progressed and evolved. As a result, the outbreaks of COVID-19 in Detroit in fall and winter 2021-2022 (corresponding to Delta and Omicron variant outbreaks) were tracked in 20 sewersheds. Data comparing community- and hospital-associated sewersheds indicate a one- to two-week advance warning in the community of subsequent peaks in viral markers in hospital sewersheds. The new institutional relationships impelled by the pandemic provide a good basis for continuing collaborations to utilize wastewater-based human and pathogen data for improving the public health in the future.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , Salud Pública , Sector Privado , Aguas Residuales , Pandemias , SARS-CoV-2 , COVID-19/epidemiología
6.
Sci Total Environ ; 889: 164180, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37201848

RESUMEN

Early detection of the COVID-19 virus, SARS-CoV-2, is key to mitigating the spread of new outbreaks. Data from individual testing is increasingly difficult to obtain as people conduct non-reported home tests, defer tests due to logistics or attitudes, or ignore testing altogether. Wastewater based epidemiology is an alternative method for surveilling a community while maintaining individual anonymity; however, a problem is that SARS-CoV-2 markers in wastewater vary throughout the day. Collecting grab samples at a single time may miss marker presence, while autosampling throughout a day is technically challenging and expensive. This study investigates a passive sampling method that would be expected to accumulate greater amounts of viral material from sewers over a period of time. Tampons were tested as passive swab sampling devices from which viral markers could be eluted with a Tween-20 surfactant wash. Six sewersheds in Detroit were sampled 16-22 times by paired swab (4 h immersion before retrieval) and grab methods over a five-month period and enumerated for N1 and N2 SARS-CoV-2 markers using ddPCR. Swabs detected SARS-CoV-2 markers significantly more frequently (P < 0.001) than grab samples, averaging two to three-fold more copies of SARS-CoV-2 markers than their paired grab samples (p < 0.0001) in the assayed volume (10 mL) of wastewater or swab eluate. No significant difference was observed in the recovery of a spiked-in control (Phi6), indicating that the improved sensitivity is not due to improvements in nucleic acid recovery or reduction of PCR inhibition. The outcomes of swab-based sampling varied significantly between sites, with swab samples providing the greatest improvements in counts for smaller sewersheds that otherwise tend to have greater variation in grab sample counts. Swab-sampling with tampons provides significant advantages in detection of SARS-CoV-2 wastewater markers and are expected to provide earlier detection of new outbreaks than grab samples, with consequent public health benefits.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Aguas Residuales , COVID-19/diagnóstico , Bioensayo , Brotes de Enfermedades
7.
Water Res ; 222: 118913, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35940154

RESUMEN

Understanding the diversity of bacteria and E.coli levels at beaches is important for managing health risks. This study compared temporal changes of the bacterial communities of Belle Isle Beach (Detroit, MI) and Sand Point Beach (Windsor, ONT), both located near the Lake St. Clair origin of the Detroit River. Water samples collected 4 days/week for 12 weeks in summer, were subjected to 16S rRNA analysis of amplicon sequencing and E. coli enumeration. Bacterial communities changed over time, as determined by cluster dendrogram analysis, exhibiting different communities in July and August than in June and different communities at the two beaches. After June, alpha diversity decreased and relative abundance of Enterobacter (Gammaproteobacteria) increased at Sand Point; whereas, Belle Isle maintained its alpha diversity and dominance by Betaproteobacteria and Actinobacteria. Contamination at both beaches is dominated by birds (23% to 50% of samples), while only ∼10% had evidence of human-associated bacteria. High E. coli at both beaches was often associated with precipitation. Nearshore sampling counts were higher than waist-deep sampling counts. Despite the dynamic changes in bacterial communities between the two beaches, this analysis based on 16S rRNA amplicon sequencing is able to provide information about bacterial types associated with high E. coli levels and to use bacterial sequences to more precisely determine sources and health relevance of contaminants.


Asunto(s)
Playas , Escherichia coli , Bacterias/genética , Monitoreo del Ambiente , Escherichia coli/genética , Heces/microbiología , Humanos , ARN Ribosómico 16S/genética , Arena , Microbiología del Agua
8.
Sci Total Environ ; 847: 157547, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35872187

RESUMEN

Wastewater based epidemiology (WBE) has emerged as a strategy to identify, locate, and manage outbreaks of COVID-19, and thereby possibly prevent surges in cases, which overwhelm local to global health care networks. The WBE process is based on assaying municipal wastewater for molecular markers of the SARS-CoV-2 virus. Standard processes for purifying viral RNA from municipal wastewater are often time-consuming and require the handling of large quantities of wastewater, negatively affecting throughput, timely reporting, and safety. We demonstrate here an automated, faster system to purify viral RNA from smaller volumes of wastewater but with increased sensitivity for detection of SARS-CoV-2 markers. We document the effectiveness of this new approach by way of comparison to the PEG/NaCl/Qiagen method prescribed by the State of Michigan for SARS-CoV-2 wastewater monitoring and show its application to several Detroit sewersheds. Specifically, compared to the PEG/NaCl/Qiagen method, viral RNA purification using the PerkinElmer Chemagic™ 360 lowered handling time, decreased the amount of wastewater required by ten-fold, increased the amount of RNA isolated per µl of final elution product by approximately five-fold, and effectively removed ddPCR inhibitors from most sewershed samples. For detection of markers on the borderline of viral detectability, we found that use of the Chemagic™ 360 enabled the measurement of viral markers in a significant number of samples for which the result with the PEG/NaCl/Qiagen method was below the level of detectability. The improvement in detectability of the viral markers might be particularly important for early warning to public health authorities at the beginning of an outbreak. Applied to sewersheds in Detroit, the technique enabled more sensitive detection of SARS-CoV-2 markers with good correlation between wastewater signals and COVID-19 cases in the sewersheds. We also discuss advantages and disadvantages of several automated RNA purification systems, made by Promega, PerkinElmer, and ThermoFisher.


Asunto(s)
COVID-19 , SARS-CoV-2 , Biomarcadores , Prueba de COVID-19 , Humanos , Reacción en Cadena de la Polimerasa , ARN Viral , SARS-CoV-2/genética , Cloruro de Sodio , Aguas Residuales/análisis
9.
PLoS One ; 16(7): e0254598, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324525

RESUMEN

Water mites are diverse aquatic invertebrates that provide potentially important ecosystem and economic services as bioindicators and mosquito biocontrol; however, little is known about water mite digestive physiology, including their diet in nature. Water mites, much like their spider relatives, liquefy their prey upon consumption. This results in the absence of morphologically identifiable prey in water mite mid-gut. Previous studies have reported associations in the field of water mites with presumed prey and laboratory observations of water mites feeding on specific organisms offered for ingestion; however, the present work aims to determine what water mites have ingested in nature based on molecular studies of gut contents from freshly collected organisms from the field. To elucidate water mite prey, we used next-generation sequencing to detect diverse cytochrome oxidase I DNA barcode sequences of putative prey in the guts of 54 specimens comprising two species of Lebertia and a few specimens of Arrenurus (2) and Limnesia (1). To our knowledge this is the first molecular study of the diets of water mites as they feed in nature. While the presence of chironomid DNA confirmed previous observations of midge larvae as part of the diets of Lebertia, we also found the DNA of diverse organisms in all four species of water mites, including the DNA of mosquitoes in 6 specimens of Lebertia and a large number of previously unknown prey, especially from oligochaete worms. These studies thereby reveal a greater diversity of prey and a potentially broader significance than previously appreciated for water mites in aquatic food webs. Molecular studies like this can detect water mite predators of mosquito larvae and add knowledge of water mite predatory contributions to freshwater food webs.


Asunto(s)
Biodiversidad , Dieta , Conducta Predatoria , Animales , Cadena Alimentaria , Ácaros
10.
Prog Mol Biol Transl Sci ; 171: 131-193, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32475520

RESUMEN

Growing evidence suggests that imbalances in resident microbes (dysbiosis) can promote chronic inflammation, immune-subversion, and production of carcinogenic metabolites, thus leading to neoplasia. Yet, evidence to support a direct link of individual bacteria species to human sporadic cancer is still limited. This chapter focuses on several emerging bacterial toxins that have recently been characterized for their potential oncogenic properties toward human orodigestive cancer and the presence of which in human tissue samples has been documented. These include cytolethal distending toxins produced by various members of gamma and epsilon Proteobacteria, Dentilisin from mammalian oral Treponema, Pasteurella multocida toxin, two Fusobacterial toxins, FadA and Fap2, Bacteroides fragilis toxin, colibactin, cytotoxic necrotizing factors and α-hemolysin from Escherichia coli, and Salmonella enterica AvrA. It was clear that these bacterial toxins have biological activities to induce several hallmarks of cancer. Some toxins directly interact with DNA or chromosomes leading to their breakdowns, causing mutations and genome instability, and others modulate cell proliferation, replication and death and facilitate immune evasion and tumor invasion, prying specific oncogene and tumor suppressor pathways, such as p53 and ß-catenin/Wnt. In addition, most bacterial toxins control tumor-promoting inflammation in complex and diverse mechanisms. Despite growing laboratory evidence to support oncogenic potential of selected bacterial toxins, we need more direct evidence from human studies and mechanistic data from physiologically relevant experimental animal models, which can reflect chronic infection in vivo, as well as take bacterial-bacterial interactions among microbiome into consideration.


Asunto(s)
Toxinas Bacterianas/efectos adversos , Carcinogénesis/patología , Intestinos/fisiología , Mucosa Bucal/metabolismo , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/metabolismo , Humanos , Intestinos/microbiología , Mucosa Bucal/microbiología
11.
J Epidemiol Res ; 2(2): 92-101, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28111632

RESUMEN

BACKGROUND: The equilibrium of oral microbiome may be altered by environmental factors, including cigarette smoking. Several recent studies also suggest that oral pathogens causing periodontal disease, such as Fusobacterium nucleatum, are involved in pathogenesis of colorectal cancer. METHODS: For this study oral rinse DNA samples from 190 participants in a population-based case-control study for colorectal cancer were used to amplify a V3-V4 region of bacterial 16S rRNA gene. The amplicons were sequenced using Illumina MiSeq paired end chemistry on two runs, yielding approximately 35 million filtered reads which were assigned to bacterial phyla. RESULTS: No association was found between Fusobacterium abundance or presence and colorectal cancer. However, adjusted for age and experimental batch, colorectal cancer history was associated with increased presence of genus Lactobacillus and increased relative abundance of Rothia by 28% and current smoking was associated with a 33% decrease in relative counts of Betaproteobacteria (primarily Neisseria) and 23% increase in relative abundance of Veillonellaceae family. We also found that smoking had significant effects on the 2nd component scores and 2nd coordinate distances in principal component and coordinate analyses. CONCLUSIONS: It remains to be elucidated whether the observed differences can be translated into biochemical changes in oral environment, thus potentially affecting oral health.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda