Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Express ; 26(9): 11447-11457, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29716063

RESUMEN

We report the intermittent burst of a super rogue wave in the multi-soliton (MS) regime of an anomalous-dispersion fiber ring cavity. We exploit the spatio-temporal measurement technique to log and capture the shot-to-shot wave dynamics of various pulse events in the cavity, and obtain the corresponding intensity probability density function, which eventually unveils the inherent nature of the extreme events encompassed therein. In the breathing MS regime, a specific MS regime with heavy soliton population, the natural probability of pulse interaction among solitons and dispersive waves exponentially increases owing to the extraordinarily high soliton population density. Combination of the probabilistically started soliton interactions and subsequently accompanying dispersive waves in their vicinity triggers an avalanche of extreme events with even higher intensities, culminating to a burst of a super rogue wave nearly ten times stronger than the average solitons observed in the cavity. Without any cavity modification or control, the process naturally and intermittently recurs within a time scale in the order of ten seconds.

2.
Opt Express ; 25(4): 4456-4469, 2017 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-28241648

RESUMEN

We numerically investigate quasi-mode-locked (QML) multi-pulse dynamics in a fiber ring laser cavity in the anomalous dispersion regime. We show that the laser cavity can operate in five constitutively different QML regimes, depending on the saturation power of the saturable absorber element and the length of the passive fiber section that parameterize the overall nonlinearity and dispersion characteristic of the laser cavity. We classify them into the incoherent noise-like-pulse, partially-coherent noise-like-pulse, symbiotic, partially-coherent multi-soliton, and coherent multi-soliton regimes, accounting for their coherence and multi-pulse formation features. In particular, we numerically clarify and confirm the symbiotic regime for the first time to the best of our knowledge, in which noise-like pulses and multi-solitons coexist stably in the cavity that has recently been observed experimentally. Furthermore, we analyze the shot-to-shot coherence characteristics of the individual QML regimes relative to the amount of the nonlinear-phase shift per roundtrip, and verify a strong correlation between them. We also show that the net-cavity dispersion plays a critical role in determining the multi-pulse dynamics out of the partially-coherent noise-like-pulse, symbiotic, and partially-coherent multi-soliton regimes, when the cavity bears moderate nonlinearity. We quantify and visualize all those characteristics onto contour maps, which will be very useful and helpful in discussing and clarifying the complex QML dynamics.

3.
Opt Express ; 25(7): 8366-8385, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28380950

RESUMEN

We propose a fiber-optic-plasmonic hybrid device that is based on a corrugation-assisted metal-coated angled fiber facet (CA-MCAFF) for wavelength-dependent off-axis directional beaming (WODB). The device breaks into two key structures: One is the MCAFF structure, which is a modified Kretschmann configuration implemented onto a fiber platform, thereby being able to generate a unidirectional surface plasmon with dramatically enhanced properties in terms of non-confined diffracted radiation loss and operational bandwidth. The other is the periodic corrugation structure put on the MCAFF, thereby enabling WODB functionality out of the whole structures. The corrugated metal surface out-couples the surface plasmon mode to free-space optical radiation into a direction that varies with the wavelength of the optical radiation with excellent linearity. We perform extensive numerical investigations based on the finite-element-method and analyze the out-coupling efficiency (OCEout) and spectral bandwidth (SBout) of the proposed device for various designs and conditions. We determine the seven structural parameters of the device via taking sequential optimization steps. We deduce two optimal conditions particularly for the fiber-facet angle, in terms of the averaged OCEout or the SBout in the whole visible wavelength range (400 - 700 nm), which eventually leads to OCEout = 30.4% and SBout = 230 nm or to OCEout = 24.5% and SBout = 245 nm, respectively. These results suggest substantial enhancements in both OCEout and SBout, in comparison with the performance properties of a typical nano-slit-based device having a similar type of WODB functionality. The proposed CA-MCAFF is a simple, compact and efficient WODB device that is fully compatible with the state-of-the-art optical fiber technology.

4.
Opt Express ; 22(22): 26844-53, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25401831

RESUMEN

We propose a novel trench-assisted circular metal nano-slit (CMNS) structure implementable on a fiber platform for the generation of a low-noise cylindrical surface plasmon (CSP) hotspot. We design trench structures based on a multi-pole cancellation method in order that a converging surface plasmon signal is well separated from co-propagating non-confined diffracted light (NCDL) at the hotspot location. In fact, the secondary radiation by the quasi-pole oscillation at the edge of the trench cancels the primary NCDL, thereby enhancing the signal-to-noise ratio (SNR) of the CSP hotspot. In particular, we investigate two types of trench structures: a rectangular-trench (RT) structure and an asymmetric-parabolic-trench (APT) structure, which are considered for the sake of the simplicity of fabrication and of the maximal enhancement of the SNR, respectively. In comparison with a conventional CMNS having no trenches, we highlight that the mean SNR of the CSP hotspot is enhanced by 6.97 and 11.89 dB in case of the optimized RT and APT CMNSs, respectively. The proposed schemes are expected to be useful for increasing the SNR of plasmonic devices that are interfered by NCDL, such as various types of nano-slits for generating high-resolution plasmonic signals, for example.

5.
Opt Express ; 20(23): 25562-71, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23187374

RESUMEN

We propose a simple and efficient light launch scheme for a helical-core fiber (HCF) by using an adiabatically tapered splice technique, through which we overcome its inherent difficulty with light launch owing to the large lateral offset and angular tilt of its core. We experimentally demonstrate single-mode excitation in the HCF in this configuration, which yields the coupling efficiency of around -5.9 dB (26%) for a ~1.1-µm light input when the splice joint is tapered down to 30 µm in diameter. To our knowledge, this is the first proof-of-principle report on the fusion-splice coupling between an HCF and a conventional single-mode fiber.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda