Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 25(18)2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39337502

RESUMEN

Currently, an increasing number of patients are undergoing extensive surgeries to restore the mucosa of the gums in the area of recessions. The use of a connective tissue graft from the palate is the gold standard of such surgical treatment, but complications, especially in cases of extensive defects, have led to the development of approaches using xenogeneic collagen matrices and methods to stimulate their regenerative and vasculogenic potential. This study investigated the potential of a xenogeneic scaffold derived from porcine skin Mucoderm and injections of the pCMV-VEGF165 plasmid ('Neovasculgen') to enhance soft gingival tissue volume and vascularization in an experimental model in rabbits. In vitro studies demonstrated the biocompatibility of the matrix and plasmid with gingival mesenchymal stem cells, showing no toxic effects and supporting cell viability and metabolic activity. In the in vivo experiment, the combination of Mucoderm and the pCMV-VEGF165 plasmid (0.12 mg) synergistically promoted tissue proliferation and vascularization. The thickness of soft tissues at the implantation site significantly increased with the combined application (3257.8 ± 1093.5 µm). Meanwhile, in the control group, the thickness of the submucosa was 341.8 ± 65.6 µm, and after the implantation of only Mucoderm, the thickness of the submucosa was 2041.6 ± 496.8 µm. Furthermore, when using a combination of Mucoderm and the pCMV-VEGF165 plasmid, the density and diameter of blood vessels were notably augmented, with a mean value of 226.7 ± 45.9 per 1 mm2 of tissue, while in the control group, it was only 68.3 ± 17.2 per 1 mm2 of tissue. With the application of only Mucoderm, it was 131.7 ± 37.1 per 1 mm2 of tissue, and with only the pCMV-VEGF165 plasmid, it was 145 ± 37.82 per 1 mm2 of the sample. Thus, the use of the pCMV-VEGF165 plasmid ('Neovasculgen') in combination with the xenogeneic collagen matrix Mucoderm potentiated the pro-proliferative effect of the membrane and the pro-vascularization effect of the plasmid. These results indicate the promising potential of this innovative approach for clinical applications in regenerative medicine and dentistry.


Asunto(s)
Encía , Plásmidos , Factor A de Crecimiento Endotelial Vascular , Animales , Conejos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Plásmidos/genética , Plásmidos/administración & dosificación , Encía/metabolismo , Terapia Genética/métodos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Andamios del Tejido/química , Porcinos , Neovascularización Fisiológica/genética , Humanos , Masculino
2.
Dent J (Basel) ; 9(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34562975

RESUMEN

Soft gingival tissue deficiency remains a severe problem leading to postoperative recession, peri-implantitis, and bone resorption. The use of collagen matrices does not always lead to complete rebuilding of the gingiva volume. The application of mesenchymal stromal cells (MSCs) simultaneously with collagen materials represents a promising approach for the restoration of soft gingival tissues. However, short-term effects of MSCs-enriched collagen grafts after gingival augmentation have not yet been studied properly. Mucograft and Mucoderm matrices were implanted in rabbits (n = 12) simultaneously with the intraoperative injection of rabbit bone marrow-derived mesenchymal stromal cells (BM-MSCs) or without cells. Collagen matrices were implanted under the flap or by the surface technique without intentional primary closure. The samples were harvested seven days after implantation, histological staining with hematoxylin and eosin, and immunohistochemical staining for VEGF, IGF1, and TGF were performed. The use of Mucoderm led to better augmentation outcomes on day 7 compared with Mucograft (p < 0.0001). Gingival augmentation in combination with the local administration of BM-MSCs led to better regeneration of the soft gingival tissues independently of the type of implanted collagen matrices (p < 0.0001). Furthermore, injection of BM-MSCs significantly enhanced gingival vascularization and epithelization with a clear positive correlation between vascular growth and epithelial response. Administration of BM-MSCs in combination with various collagen materials may potentially improve gingiva regeneration.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda