Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38279250

RESUMEN

The genetic causes of epilepsies and developmental and epileptic encephalopathies (DEE) with onset in early childhood are increasingly recognized. Their outcomes vary from benign to severe disability. In this paper, we wished to retrospectively review the clinical, genetic, EEG, neuroimaging, and outcome data of patients experiencing the onset of epilepsy in the first three years of life, diagnosed and followed up in four Italian epilepsy centres (Epilepsy Centre of San Paolo University Hospital in Milan, Child Neurology and Psychiatry Unit of AUSL-IRCCS di Reggio Emilia, Pediatric Neurology Unit of Vittore Buzzi Children's Hospital, Milan, and Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia). We included 168 patients (104 with monogenic conditions, 45 with copy number variations (CNVs) or chromosomal abnormalities, and 19 with variants of unknown significance), who had been followed up for a mean of 14.75 years. We found a high occurrence of generalized seizures at onset, drug resistance, abnormal neurological examination, global developmental delay and intellectual disability, and behavioural and psychiatric comorbidities. We also documented differing presentations between monogenic issues versus CNVs and chromosomal conditions, as well as atypical/rare phenotypes. Genetic early-childhood-onset epilepsies and DEE show a very wide phenotypic and genotypic spectrum, with a high risk of complex neurological and neuropsychiatric phenotypes.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Humanos , Preescolar , Variaciones en el Número de Copia de ADN , Estudios Retrospectivos , Epilepsia/genética , Epilepsia/diagnóstico , Convulsiones/genética
2.
Epilepsia ; 64(12): e222-e228, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37746765

RESUMEN

Missense variants of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels cause variable phenotypes, ranging from mild generalized epilepsy to developmental and epileptic encephalopathy (DEE). Although variants of HCN1 are an established cause of DEE, those of HCN2 have been reported in generalized epilepsies. Here we describe the first case of DEE caused by the novel de novo heterozygous missense variant c.1379G>A (p.G460D) of HCN2. Functional characterization in transfected HEK293 cells and neonatal rat cortical neurons revealed that HCN2 p.G460D currents were strongly reduced compared to wild-type, consistent with a dominant negative loss-of-function effect. Immunofluorescence staining showed that mutant channels are retained within the cell and do not reach the membrane. Moreover, mutant HCN2 also affect HCN1 channels, by reducing the Ih current expressed by the HCN1-HCN2 heteromers. Due to the persistence of frequent seizures despite pharmacological polytherapy, the patient was treated with a ketogenic diet, with a significant and long-lasting reduction of episodes. In vitro experiments conducted in a ketogenic environment demonstrated that the clinical improvement observed with this dietary regimen was not mediated by a direct action on HCN2 activity. These results expand the clinical spectrum related to HCN2 channelopathies, further broadening our understanding of the pathogenesis of DEE.


Asunto(s)
Dieta Cetogénica , Epilepsia Generalizada , Humanos , Ratas , Animales , Canales de Potasio/genética , Canales de Potasio/metabolismo , Células HEK293 , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Epilepsia Generalizada/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos
3.
Pharmacol Res ; 195: 106884, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37549757

RESUMEN

Tuberous sclerosis complex (TSC) is an autosomal dominant disease characterised by abnormal cell proliferation and differentiation that affects multiple organs and can lead to the growth of hamartomas. Tuberous sclerosis complex is caused by the disinhibition of the protein mTOR (mammalian target of rapamycin). In the past, various therapeutic approaches, even if only symptomatic, have been attempted to improve the clinical effects of this disease. While all of these therapeutic strategies are useful and are still used and indicated, they are symptomatic therapies based on the individual symptoms of the disease and therefore not fully effective in modifying long-term outcomes. A new therapeutic approach is the introduction of allosteric inhibitors of mTORC1, which allow restoration of metabolic homeostasis in mutant cells, potentially eliminating most of the clinical manifestations associated with Tuberous sclerosis complex. Everolimus, a mammalian target of the rapamycin inhibitor, is able to reduce hamartomas, correcting the specific molecular defect that causes Tuberous sclerosis complex. In this review, we report the findings from the literature on the use of everolimus as an effective and safe drug in the treatment of TSC manifestations affecting various organs, from the central nervous system to the heart.


Asunto(s)
Everolimus , Esclerosis Tuberosa , Humanos , Everolimus/uso terapéutico , Esclerosis Tuberosa/tratamiento farmacológico , Esclerosis Tuberosa/metabolismo , Sirolimus/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina
4.
Brain ; 145(9): 2991-3009, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34431999

RESUMEN

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.


Asunto(s)
Epilepsia Generalizada , Síndromes Epilépticos , Discapacidad Intelectual , Canal de Sodio Activado por Voltaje NAV1.6 , Epilepsia Generalizada/tratamiento farmacológico , Epilepsia Generalizada/genética , Síndromes Epilépticos/tratamiento farmacológico , Síndromes Epilépticos/genética , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/genética , Mutación , Canal de Sodio Activado por Voltaje NAV1.6/genética , Pronóstico , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Bloqueadores de los Canales de Sodio/uso terapéutico
5.
Neurol Sci ; 44(9): 3037-3043, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37046037

RESUMEN

BACKGROUND AND AIMS: Mutations in FDXR gene, involved in mitochondrial pathway, cause a rare recessive neurological disorder with variable severity of phenotypes. The most common presentation includes optic and/or auditory neuropathy, variably associated to developmental delay or regression, global hypotonia, pyramidal, cerebellar signs, and seizures. The review of clinical findings in previously described cases from literature reveals also a significant incidence of sensorimotor peripheral polyneuropathy (22.72%) and ataxia (43.18%). To date, 44 patients with FDXR mutations have been reported. We describe here on two new patients, siblings, who presented with a quite different phenotype compared to previously described patients. METHODS: Clinical, neurophysiological, and genetic features of two siblings and a systematic literature review focused on the clinical spectrum of the disease are described. RESULTS: Both patients presented with an acute-sub-acute onset of peripheral neuropathy and only in later stages of the disease developed the typical features of FDXR-associated disease. INTERPRETATION: The peculiar clinical presentation at onset and the evolution of the disease in our patients and in some cases revised from the literature shed lights on a new possible phenotype of FDXR-associated disease: a peripheral neuropathy which can mimic an acute inflammatory disease.


Asunto(s)
Ataxia Cerebelosa , Enfermedades del Sistema Nervioso Periférico , Humanos , Diagnóstico Diferencial , Ataxia/diagnóstico , Ataxia/genética , Ataxia Cerebelosa/diagnóstico , Mutación , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/genética , Fenotipo
6.
Brain ; 144(1): 186-197, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33221873

RESUMEN

The thalamus represents one of the first structures affected by neurodegenerative processes in multiple sclerosis. A greater thalamic volume reduction over time, on its CSF side, has been described in paediatric multiple sclerosis patients. However, its determinants and the underlying pathological changes, likely occurring before this phenomenon becomes measurable, have never been explored. Using a multiparametric magnetic resonance approach, we quantified, in vivo, the different processes that can involve the thalamus in terms of focal lesions, microstructural damage and atrophy in paediatric multiple sclerosis patients and their distribution according to the distance from CSF/thalamus interface and thalamus/white matter interface. In 70 paediatric multiple sclerosis patients and 26 age- and sex-matched healthy controls, we tested for differences in thalamic volume and quantitative MRI metrics-including fractional anisotropy, mean diffusivity and T1/T2-weighted ratio-in the whole thalamus and in thalamic white matter, globally and within concentric bands originating from CSF/thalamus interface. In paediatric multiple sclerosis patients, the relationship of thalamic abnormalities with cortical thickness and white matter lesions was also investigated. Compared to healthy controls, patients had significantly increased fractional anisotropy in whole thalamus (f2 = 0.145; P = 0.03), reduced fractional anisotropy (f2 = 0.219; P = 0.006) and increased mean diffusivity (f2 = 0.178; P = 0.009) in thalamic white matter and a trend towards a reduced thalamic volume (f2 = 0.027; P = 0.058). By segmenting the whole thalamus and thalamic white matter into concentric bands, in paediatric multiple sclerosis we detected significant fractional anisotropy abnormalities in bands nearest to CSF (f2 = 0.208; P = 0.002) and in those closest to white matter (f2 range = 0.183-0.369; P range = 0.010-0.046), while we found significant mean diffusivity (f2 range = 0.101-0.369; P range = 0.018-0.042) and T1/T2-weighted ratio (f2 = 0.773; P = 0.001) abnormalities in thalamic bands closest to CSF. The increase in fractional anisotropy and decrease in mean diffusivity detected at the CSF/thalamus interface correlated with cortical thickness reduction (r range = -0.27-0.34; P range = 0.004-0.028), whereas the increase in fractional anisotropy detected at the thalamus/white matter interface correlated with white matter lesion volumes (r range = 0.24-0.27; P range = 0.006-0.050). Globally, our results support the hypothesis of heterogeneous pathological processes, including retrograde degeneration from white matter lesions and CSF-mediated damage, leading to thalamic microstructural abnormalities, likely preceding macroscopic tissue loss. Assessing thalamic microstructural changes using a multiparametric magnetic resonance approach may represent a target to monitor the efficacy of neuroprotective strategies early in the disease course.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente/patología , Tálamo/patología , Adolescente , Anisotropía , Progresión de la Enfermedad , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Esclerosis Múltiple Recurrente-Remitente/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
7.
Neuropediatrics ; 53(4): 283-286, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34844266

RESUMEN

We report a patient affected by BCL11B-related disorder, providing the first extensive demonstration of clinical and neuroradiological progressive course of the disease, with possible implications on the way it is studied and followed-up. Never described clinical aspects such as toes abnormalities and hypospadias widen the range of dysmorphisms associated with this condition. Our data suggest that BCL11B mutations may be implicated not only in impaired morphogenesis and hematopoiesis but also in progressive central nervous system damage, which remains to be further investigated and clarified.


Asunto(s)
Mutación Missense , Proteínas Supresoras de Tumor , Niño , Humanos , Masculino , Mutación , Proteínas Represoras/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
8.
Epilepsy Behav ; 127: 108515, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34991056

RESUMEN

OBJECTIVE: In Europe, eslicarbazepine acetate (ESL) is approved as adjunctive therapy for the treatment of focal seizures (FS) in children aged >6 years. In the US, ESL is approved as both monotherapy and adjunctive therapy for the treatment of FS in patients aged ≥4 years. In a phase II study of children aged 6-16 years with FS, ESL had no significant effects on attention or behavioral functioning and decreased seizure frequency during double-blind therapy and a 1-year open-label extension (OLE). This report presents data from an additional 2-year OLE of the phase II study. METHODS: Previous recipients of ESL or placebo were treated with open-label ESL (10-30 mg/kg/day, adjusted for clinical response and/or adverse events [AEs]). Safety was assessed by incidence of treatment-emergent AEs (TEAEs). Efficacy endpoints were treatment retention time and change from baseline in Clinical Global Impression-Severity (CGI-S) scale scores. RESULTS: Forty-two patients entered and 31 (73.8%) completed the 2-year OLE. Median treatment retention time was 735 (95% confidence interval 728-741) days. Seven patients (17% of total, 23% of completed) experienced ≥1 TEAE during the 2-year OLE, mostly of mild or moderate intensity. The incidence of serious TEAEs was low (n = 2; 5% of total, 6% of completed) and none were related to ESL. One child was withdrawn because of splenomegaly that was considered possibly related to ESL. The only change from baseline in CGI-S was a 0.5-point reduction in the severity of illness score. All findings were consistent across patient subgroups based on previous double-blind treatment (placebo or ESL) and patient age (6-11 or 12-16 years). CONCLUSIONS: The majority of patients remained on ESL during the 2-year OLE, and treatment efficacy was maintained. Adverse events were consistent with the known safety profile of ESL, and no new safety signals were identified.


Asunto(s)
Anticonvulsivantes , Dibenzazepinas , Adolescente , Anticonvulsivantes/efectos adversos , Niño , Preescolar , Cognición , Dibenzazepinas/efectos adversos , Método Doble Ciego , Humanos , Convulsiones/tratamiento farmacológico , Resultado del Tratamiento
9.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362347

RESUMEN

GLUT1 deficiency syndrome (GLUT1DS1; OMIM #606777) is a rare genetic metabolic disease, characterized by infantile-onset epileptic encephalopathy, global developmental delay, progressive microcephaly, and movement disorders (e.g., spasticity and dystonia). It is caused by heterozygous mutations in the SLC2A1 gene, which encodes the GLUT1 protein, a glucose transporter across the blood-brain barrier (BBB). Most commonly, these variants arise de novo resulting in sporadic cases, although several familial cases with AD inheritance pattern have been described. Twenty-seven Italian pediatric patients, clinically suspect of GLUT1DS from both sporadic and familial cases, have been enrolled. We detected by trios sequencing analysis 25 different variants causing GLUT1DS. Of these, 40% of the identified variants (10 out of 25) had never been reported before, including missense, frameshift, and splice site variants. Their structural mapping on the X-ray structure of GLUT1 strongly suggested the potential pathogenic effects of these novel disease-related mutations, broadening the genotypic spectrum heterogeneity found in the SLC2A1 gene. Moreover, 24% is located in a vulnerable region of the GLUT1 protein that involves transmembrane 4 and 5 helices encoded by exon 4, confirming a mutational hotspot in the SLC2A1 gene. Lastly, we investigated possible correlations between mutation type and clinical and biochemical data observed in our GLUT1DS cohort, revealing that splice site and frameshift variants are related to a more severe phenotype and low CSF parameters.


Asunto(s)
Errores Innatos del Metabolismo de los Carbohidratos , Humanos , Transportador de Glucosa de Tipo 1/genética , Errores Innatos del Metabolismo de los Carbohidratos/genética , Proteínas de Transporte de Monosacáridos/genética , Mutación , Biología Molecular
10.
Mol Genet Metab ; 134(4): 353-358, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34865968

RESUMEN

Alexander disease (AxD) is a leukodystrophy that primarily affects astrocytes and is caused by dominant variants in the Glial Fibrillary Acidic Protein gene. Three main classifications are currently used, the traditional one defined by the age of onset, and two more recent ones based on both clinical features at onset and brain MRI findings. In this study, we retrospectively included patients with genetically confirmed pediatric-onset AxD. Twenty-one Italian patients were enrolled, and we revised all their clinical and radiological data. Participants were divided according to the current classification systems. We qualitatively analyzed data on neurodevelopment and neurologic decline in order to identify the possible trajectories of the evolution of the disease over time. One patient suffered from a Neonatal presentation and showed a rapidly evolving course which led to death within the second year of life (Type Ia). 16 patients suffered from the Infantile presentation: 5 of them (here defined Type Ib) presented developmental delay and began to deteriorate by the age of 5. A second group (Type Ic) included patients who presented a delay in neuromotor development and started deteriorating after 6 years of age. A third group (Type Id) included patients who presented developmental delay and remained clinically stable beyond adolescence. In 4 patients, the age at last evaluation made it not possible to ascertain whether they belonged to Type Ic or Id, as they were too young to evaluate their neurologic decline. 4 patients suffered from the Juvenile presentation: they had normal neuromotor development with no or only mild cognitive impairment; the subsequent clinical evolution was similar to Type Ic AxD in 2 patients, to Id group in the other 2. In conclusion, our results confirm previously described findings about clinical features at onset; based on follow-up data we might classify patients with Type I AxD into four subgroups (Ia, Ib, Ic, Id). Further studies will be needed to confirm our results and to better highlight the existence of clinical and neuroradiological prognostic factors able to predict disease progression.


Asunto(s)
Enfermedad de Alexander/complicaciones , Adolescente , Adulto , Enfermedad de Alexander/clasificación , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Estudios Retrospectivos , Adulto Joven
11.
J Hum Genet ; 66(10): 1035-1037, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33785861

RESUMEN

Monoallelic mutations on TMEM63A have been recently reported as cause of a previously unrecognized disorder named "infantile-onset transient hypomyelination". Clinical and neuroradiological presentation is described as highly similar to Pelizaeus-Merzbacher Disease but evolution over time was surprisingly benign with a progressive spontaneous improving course. We report on a new TMEM63A-mutated girl. The clinical picture was similar to the one already described except for the presence of recurrent episodes of unilateral eyelid twitching, and for the evidence of spinal cord involvement on MRI. These are interesting findings helping in distinguishing this condition from classic PMD since early disease stages. However, additional observations are needed to confirm if these are common features of this condition.


Asunto(s)
Predisposición Genética a la Enfermedad , Proteínas de la Membrana/genética , Proteína Proteolipídica de la Mielina/genética , Enfermedad de Pelizaeus-Merzbacher/genética , Médula Espinal/diagnóstico por imagen , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Mutación/genética , Enfermedad de Pelizaeus-Merzbacher/diagnóstico por imagen , Enfermedad de Pelizaeus-Merzbacher/metabolismo , Enfermedad de Pelizaeus-Merzbacher/patología , Médula Espinal/metabolismo , Médula Espinal/patología
12.
Metab Brain Dis ; 36(5): 859-863, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33721182

RESUMEN

Aicardi-Goutières Syndrome (AGS) is a monogenic leukodystrophy with pediatric onset, clinically characterized by a variable degree of neurologic impairment. It belongs to a group of condition called type I interferonopathies that are characterized by abnormal overproduction of interferon alpha, an inflammatory cytokine which action is mediated by the activation of two of the four human Janus Kinases. Thanks to an ever-increasing knowledge of the molecular basis and pathogenetic mechanisms of the disease, Janus Kinase inhibitors (JAKIs) have been proposed as a treatment option for selected interferonopathies. Here we reported the 24 months follow-up of the fifth AGS patient treated with ruxolitinib described so far in literature. The treatment was globally well tolerated; clinical examinations and radiological images demonstrated a progressively improving course. It is however to note that patients presenting with mild and spontaneously improving course have been reported. Large natural history studies on AGS spectrum are strongly required in order to get a better understanding of the results emerging from ongoing therapeutic trials on such rare disease.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Malformaciones del Sistema Nervioso/tratamiento farmacológico , Nitrilos/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico por imagen , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Resultado del Tratamiento
13.
Hum Brain Mapp ; 41(2): 453-466, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31710770

RESUMEN

Glucose transporter type I deficiency syndrome (GLUT1DS) is an encephalopathic disorder due to a chronic insufficient transport of glucose into the brain. PET studies in GLUT1DS documented a widespread cortico-thalamic hypometabolism and a signal increase in the basal ganglia, regardless of age and clinical phenotype. Herein, we captured the pattern of functional connectivity of distinct striatal, cortical, and cerebellar regions in GLUT1DS (10 children, eight adults) and in healthy controls (HC, 19 children, 17 adults) during rest. Additionally, we explored for regional connectivity differences in GLUT1 children versus adults and according to the clinical presentation. Compared to HC, GLUT1DS exhibited increase connectivity within the basal ganglia circuitries and between the striatal regions with the frontal cortex and cerebellum. The excessive connectivity was predominant in patients with movement disorders and in children compared to adults, suggesting a correlation with the clinical phenotype and age at fMRI study. Our findings highlight the primary role of the striatum in the GLUT1DS pathophysiology and confirm the dependency of symptoms to the patients' chronological age. Despite the reduced chronic glucose uptake, GLUT1DS exhibit increased connectivity changes in regions highly sensible to glycopenia. Our results may portrait the effect of neuroprotective brain strategy to overcome the chronic poor energy supply during vulnerable ages.


Asunto(s)
Ganglios Basales , Encefalopatías Metabólicas Innatas , Cerebelo , Transportador de Glucosa de Tipo 1/deficiencia , Desarrollo Humano , Red Nerviosa , Neuroprotección , Corteza Prefrontal , Adolescente , Adulto , Ganglios Basales/diagnóstico por imagen , Ganglios Basales/metabolismo , Ganglios Basales/fisiopatología , Encefalopatías Metabólicas Innatas/diagnóstico por imagen , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/metabolismo , Encefalopatías Metabólicas Innatas/fisiopatología , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Cerebelo/fisiopatología , Niño , Enfermedad Crónica , Epilepsia/diagnóstico por imagen , Epilepsia/etiología , Epilepsia/metabolismo , Epilepsia/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Trastornos del Movimiento/diagnóstico por imagen , Trastornos del Movimiento/etiología , Trastornos del Movimiento/metabolismo , Trastornos del Movimiento/fisiopatología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/metabolismo , Red Nerviosa/fisiopatología , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo , Corteza Prefrontal/fisiopatología , Adulto Joven
14.
Am J Med Genet A ; 182(10): 2325-2332, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32798292

RESUMEN

Aicardi syndrome (AIC) is a rare congenital neurodevelopmental disorder of unknown etiology, that affects almost exclusively females, originally characterized by corpus callosum agenesis, chorioretinal lacunae, and infantile spasms. The current diagnostic criteria also include qualitative facial features (prominent premaxilla, upturned nasal tip, decreased nasal bridge angle, sparse lateral eyebrows, and microphthalmia) that still need quantification. A three-dimensional (3D) photogrammetric assessment of 11 Italian females, age 7-32 years, who satisfied AIC criteria, was performed. Linear distances and angles were computed from soft-tissue facial landmarks coordinates. The z-score values were calculated using data of 850 healthy reference females matched for age and compared by Mann-Whitney test (p < .01). Patients showed a shorter philtrum and right side orbital height (mean z-scores: -1.7, -0.9), shorter superior, middle, and inferior facial depths (mean z-scores: -1.3, -2.2, -2.3), and a smaller length of mandibular ramus (mean z-score: -2.1); conversely, they showed larger nasal and lower facial widths, and lower facial convexity (mean z-scores: 1.7, 1.4, 2.4). The inclinations of the orbit versus the true horizontal were increased bilaterally (mean z-scores: 1.8, 1.1). Some common facial abnormalities were quantified in AIC patients using a noninvasive instrument. They may help clinicians in performing a definite AIC diagnosis in atypical or doubt cases.


Asunto(s)
Síndrome de Aicardi/diagnóstico , Cara/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional , Adolescente , Adulto , Agenesia del Cuerpo Calloso/diagnóstico , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Agenesia del Cuerpo Calloso/fisiopatología , Síndrome de Aicardi/diagnóstico por imagen , Síndrome de Aicardi/fisiopatología , Pesos y Medidas Corporales , Niño , Síndrome de Down/diagnóstico por imagen , Síndrome de Down/genética , Síndrome de Down/fisiopatología , Cara/fisiopatología , Femenino , Humanos , Italia/epidemiología , Nariz/diagnóstico por imagen , Nariz/fisiopatología , Adulto Joven
15.
Epilepsy Behav ; 109: 107115, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32438120

RESUMEN

Both clinical features of seizures and affective problems (i.e., depressive and/or anxious symptoms) affect quality of life perception in patients with epilepsy. Although genetic generalized epilepsies (GGEs) represent one-third of all epilepsies, very few studies focused on the association among seizures, affective problems, and perceived quality of life in pediatric patients with GGE. Here, we assessed the relative contributions of seizure characteristics and affective symptoms on quality of life in patients with adolescence-onset GGE. Forty pediatric outpatients completed self-report questionnaires on affective symptoms and quality of life. Sociodemographic and clinical variables were obtained from medical charts. Affective symptoms were present in 40% of patients. Higher scores emerged in patients who were seizure-free at the time of the survey for both the physical and mental components of quality of life. Higher seizure frequency was significantly associated with lower quality of life scores in the mental component, whereas the presence of depressive and/or anxious symptoms was significantly associated with lower scores in the physical component. These associations were confirmed after controlling for sociodemographic confounders. These findings suggest that adolescents with GGE are at increased risk for affective symptoms. Moreover, both GGE-related clinical features (i.e., seizure frequency) and the presence of affective symptoms (i.e., depression, anxiety) are relevant and independent contributors to quality of life. The investigation of affective problems is warranted to be included in routine assessments of GGE in pediatric populations.


Asunto(s)
Conducta del Adolescente/psicología , Síntomas Afectivos/psicología , Epilepsia Generalizada/psicología , Calidad de Vida/psicología , Convulsiones/psicología , Adolescente , Adulto , Síntomas Afectivos/genética , Niño , Epilepsia Generalizada/genética , Femenino , Humanos , Masculino , Convulsiones/genética , Autoinforme , Encuestas y Cuestionarios
16.
Am J Hum Genet ; 99(6): 1325-1337, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27912044

RESUMEN

Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, functions as a cofactor in humans for more than 140 enzymes, many of which are involved in neurotransmitter synthesis and degradation. A deficiency of PLP can present, therefore, as seizures and other symptoms that are treatable with PLP and/or pyridoxine. Deficiency of PLP in the brain can be caused by inborn errors affecting B6 vitamer metabolism or by inactivation of PLP, which can occur when compounds accumulate as a result of inborn errors of other pathways or when small molecules are ingested. Whole-exome sequencing of two children from a consanguineous family with pyridoxine-dependent epilepsy revealed a homozygous nonsense mutation in proline synthetase co-transcribed homolog (bacterial), PROSC, which encodes a PLP-binding protein of hitherto unknown function. Subsequent sequencing of 29 unrelated indivduals with pyridoxine-responsive epilepsy identified four additional children with biallelic PROSC mutations. Pre-treatment cerebrospinal fluid samples showed low PLP concentrations and evidence of reduced activity of PLP-dependent enzymes. However, cultured fibroblasts showed excessive PLP accumulation. An E.coli mutant lacking the PROSC homolog (ΔYggS) is pyridoxine sensitive; complementation with human PROSC restored growth whereas hPROSC encoding p.Leu175Pro, p.Arg241Gln, and p.Ser78Ter did not. PLP, a highly reactive aldehyde, poses a problem for cells, which is how to supply enough PLP for apoenzymes while maintaining free PLP concentrations low enough to avoid unwanted reactions with other important cellular nucleophiles. Although the mechanism involved is not fully understood, our studies suggest that PROSC is involved in intracellular homeostatic regulation of PLP, supplying this cofactor to apoenzymes while minimizing any toxic side reactions.


Asunto(s)
Epilepsia/genética , Epilepsia/metabolismo , Homeostasis/genética , Mutación , Proteínas/genética , Fosfato de Piridoxal/metabolismo , Vitamina B 6/metabolismo , Adolescente , Carnosina/análogos & derivados , Carnosina/metabolismo , Células Cultivadas , Niño , Preescolar , Exoma/genética , Femenino , Fibroblastos , Homocigoto , Humanos , Lactante , Masculino , Linaje , Prolina/metabolismo , Vitamina B 6/sangre
17.
Mol Genet Metab ; 126(4): 489-494, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30826161

RESUMEN

BACKGROUND: Aicardi-Goutières syndrome (AGS) is a rare genetic leukoencephalopathy related to inappropriate activation of type I interferon. Neuroradiological findings are typically characterized by white matter abnormalities, cerebral atrophy and cerebral calcification. The disease usually manifests itself during the first year of life in the form of an initial "encephalitic-like" phase followed by a chronic phase of stabilization of the neurological signs. Recently new therapeutic strategies have been proposed aimed at blocking the abnormal activation of the interferon cascade. MATERIALS AND METHODS: We reviewed clinical and MRI findings in three young RNASEH2B-mutated patients studied with serial CT and MRI studies. RESULTS: All three patients presented clinical and MRI features consistent with AGS but, very unexpectedly, an improving neuroradiological course. In patient 1, the MRI improvement was noted some months after treatment with high-dose steroid and IVIg treatment; in patients 2 and 3 it occurred spontaneously. Patient 2 did not show cerebral calcification on CT images. CONCLUSIONS: Our series highlights the possibility of spontaneous neuroradiological improvement in AGS2 patients, as well as the possibility of absence of cerebral calcification in AGS. The study underlines the need for extreme caution when using MRI as an outcome measure in therapeutic trials specific for this disease. MRI follow-up studies in larger series are necessary to describe the natural course of AGS.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Calcinosis , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Enfermedades Autoinmunes del Sistema Nervioso/genética , Encéfalo/patología , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Mutación , Malformaciones del Sistema Nervioso/genética , Neuroimagen , Ribonucleasa H/genética , Tomografía Computarizada por Rayos X
18.
Epilepsia ; 60(5): 830-844, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30968951

RESUMEN

OBJECTIVE: Pathogenic variants in SCN8A have been associated with a wide spectrum of epilepsy phenotypes, ranging from benign familial infantile seizures (BFIS) to epileptic encephalopathies with variable severity. Furthermore, a few patients with intellectual disability (ID) or movement disorders without epilepsy have been reported. The vast majority of the published SCN8A patients suffer from severe developmental and epileptic encephalopathy (DEE). In this study, we aimed to provide further insight on the spectrum of milder SCN8A-related epilepsies. METHODS: A cohort of 1095 patients were screened using a next generation sequencing panel. Further patients were ascertained from a network of epilepsy genetics clinics. Patients with severe DEE and BFIS were excluded from the study. RESULTS: We found 36 probands who presented with an SCN8A-related epilepsy and normal intellect (33%) or mild (61%) to moderate ID (6%). All patients presented with epilepsy between age 1.5 months and 7 years (mean = 13.6 months), and 58% of these became seizure-free, two-thirds on monotherapy. Neurological disturbances included ataxia (28%) and hypotonia (19%) as the most prominent features. Interictal electroencephalogram was normal in 41%. Several recurrent variants were observed, including Ile763Val, Val891Met, Gly1475Arg, Gly1483Lys, Phe1588Leu, Arg1617Gln, Ala1650Val/Thr, Arg1872Gln, and Asn1877Ser. SIGNIFICANCE: With this study, we explore the electroclinical features of an intermediate SCN8A-related epilepsy with mild cognitive impairment, which is for the majority a treatable epilepsy.


Asunto(s)
Epilepsia/genética , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.6/genética , Anticonvulsivantes/uso terapéutico , Ataxia/genética , Niño , Preescolar , Disfunción Cognitiva/genética , Electroencefalografía , Epilepsia/tratamiento farmacológico , Epilepsia/fisiopatología , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Discapacidad Intelectual/genética , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Movimiento/genética , Hipotonía Muscular/genética , Linaje , Índice de Severidad de la Enfermedad
19.
Brain ; 140(9): 2337-2354, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29050392

RESUMEN

Recently, de novo mutations in the gene KCNA2, causing either a dominant-negative loss-of-function or a gain-of-function of the voltage-gated K+ channel Kv1.2, were described to cause a new molecular entity within the epileptic encephalopathies. Here, we report a cohort of 23 patients (eight previously described) with epileptic encephalopathy carrying either novel or known KCNA2 mutations, with the aim to detail the clinical phenotype associated with each of them, to characterize the functional effects of the newly identified mutations, and to assess genotype-phenotype associations. We identified five novel and confirmed six known mutations, three of which recurred in three, five and seven patients, respectively. Ten mutations were missense and one was a truncation mutation; de novo occurrence could be shown in 20 patients. Functional studies using a Xenopus oocyte two-microelectrode voltage clamp system revealed mutations with only loss-of-function effects (mostly dominant-negative current amplitude reduction) in eight patients or only gain-of-function effects (hyperpolarizing shift of voltage-dependent activation, increased amplitude) in nine patients. In six patients, the gain-of-function was diminished by an additional loss-of-function (gain-and loss-of-function) due to a hyperpolarizing shift of voltage-dependent activation combined with either decreased amplitudes or an additional hyperpolarizing shift of the inactivation curve. These electrophysiological findings correlated with distinct phenotypic features. The main differences were (i) predominant focal (loss-of-function) versus generalized (gain-of-function) seizures and corresponding epileptic discharges with prominent sleep activation in most cases with loss-of-function mutations; (ii) more severe epilepsy, developmental problems and ataxia, and atrophy of the cerebellum or even the whole brain in about half of the patients with gain-of-function mutations; and (iii) most severe early-onset phenotypes, occasionally with neonatal onset epilepsy and developmental impairment, as well as generalized and focal seizures and EEG abnormalities for patients with gain- and loss-of-function mutations. Our study thus indicates well represented genotype-phenotype associations between three subgroups of patients with KCNA2 encephalopathy according to the electrophysiological features of the mutations.


Asunto(s)
Encefalopatías/diagnóstico , Encefalopatías/genética , Epilepsia/diagnóstico , Canal de Potasio Kv.1.2/genética , Animales , Encefalopatías/complicaciones , Epilepsia/complicaciones , Epilepsia/genética , Estudios de Asociación Genética , Mutación , Oocitos/fisiología , Fenotipo , Xenopus
20.
Epilepsy Behav ; 74: 1-9, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28654799

RESUMEN

INTRODUCTION: Continuous spike and waves during slow sleep (CSWS) is a typical EEG pattern defined as diffuse, bilateral and recently also unilateral or focal localization spike-wave occurring in slow sleep or non-rapid eye movement sleep. Literature results so far point out a progressive deterioration and decline of intellectual functioning in CSWS patients, i.e. a loss of previously normally acquired skills, as well as persistent neurobehavioral disorders, beyond seizure and EEG control. The objective of this study was to shed light on the neurobehavioral impact of CSWS and to identify the potential clinical risk factors for development. METHODS: We conducted a retrospective study involving a series of 16 CSWS idiopathic patients age 3-16years, considering the entire duration of epilepsy from the onset to the outcome, i.e. remission of CSWS pattern. All patients were longitudinally assessed taking into account clinical (sex, age at onset, lateralization and localization of epileptiform abnormalities, spike wave index, number of antiepileptic drugs) and behavioral features. Intelligent Quotient (IQ) was measured in the whole sample, whereas visuo-spatial attention, visuo-motor skills, short term memory and academic abilities (reading and writing) were tested in 6 out of 16 patients. RESULTS: Our results showed that the most vulnerable from an intellectual point of view were those children who had an early-onset of CSWS whereas those with later onset resulted less affected (p=0.004). Neuropsychological outcome was better than the behavioral one and the lexical-semantic route in reading and writing resulted more severely affected compared to the phonological route. CONCLUSIONS: Cognitive deterioration is one but not the only consequence of CSWS. Especially with respect to verbal skills, CSWS is responsible of a pattern of consequences in terms of developmental hindrance, including slowing of development and stagnation, whereas deterioration is rare. Behavioral and academic problems tend to persist beyond epilepsy resolution.


Asunto(s)
Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/fisiopatología , Electroencefalografía/tendencias , Vigilancia de la Población , Fases del Sueño/fisiología , Adolescente , Niño , Preescolar , Trastornos del Conocimiento/psicología , Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Epilepsia/psicología , Femenino , Estudios de Seguimiento , Humanos , Pruebas de Inteligencia , Masculino , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda