Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Compr Rev Food Sci Food Saf ; 20(4): 3388-3403, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34118127

RESUMEN

Currently, reducing packaging plastic waste and food losses are concerning topics in the food packaging industry. As an alternative for these challenges, antimicrobial and antioxidant materials have been developed by incorporating active agents (AAs) into biodegradable polymers to extend the food shelf life. In this context, developing biodegradable active materials based on polylactic acid (PLA) and natural compounds are a great alternative to maintain food safety and non-toxicity of the packaging. AAs, such as essential oils and polyphenols, have been added mainly as antimicrobial and antioxidant natural compounds in PLA packaging. In this review, current techniques used to develop active PLA packaging films were described in order to critically compare their feasibility, advantages, limitations, and relevant processing aspects. The analysis was focused on the processing conditions, such as operation variables and stages, and factors related to the AAs, such as their concentrations, weight losses during processing, and incorporation technique, among others. Recent developments of active PLA-based monolayers and bi- or multilayer films were also considered. In addition, patents on inventions and technologies on active PLA-based films for food packaging were reviewed. This review highlights that the selection of the processing technique and conditions to obtain active PLA depends on the type of the AA regarding its volatility, solubility, and thermosensitivity.


Asunto(s)
Antiinfecciosos , Polímeros , Antioxidantes , Poliésteres
2.
Compr Rev Food Sci Food Saf ; 19(4): 1760-1776, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33337105

RESUMEN

Nanotechnology is considered a highly valued technology to reduce the current environmental problem that is derived from plastic accumulation. The need to recycle and reuse packaging materials is essential to create a sustainable society towards a circular economy. However, the reprocessing of polymers leads to the deterioration of their characteristic mechanical, optical, thermal, and barrier properties due to the degradation of their polymeric chains. When recycled polymers are reinforced with nanoadditives, aforementioned properties improve and their use in the circular economy is more viable. In this review, different types of nanoadditives and recent advances in the development of recycled polymer nanocomposites reinforced with nanoadditives will be presented. In addition, there is a description of two research topics of current interest, recyclability of nanocomposites and safety for food packaging applications. Recyclability of nanocomposites requires a study that includes the nature of the polymer matrix, the type of polymer and the concentration of nanofiller, the morphology, the presence of additives, and the conditions of the thermal-mechanical cycles. Finally, safety section is dedicated to clarify the migration process in nanoreinforced-recycled polymers in order to assess their safety for food contact applications.


Asunto(s)
Embalaje de Alimentos , Nanocompuestos/química , Polímeros/química , Inocuidad de los Alimentos , Reciclaje
3.
Polymers (Basel) ; 15(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679242

RESUMEN

Betalains are bioactive compounds with remarkable functional and nutritional activities for health and food preservation and attractiveness. Nevertheless, they are highly sensitive to external factors, such as oxygen presence, light, and high temperatures. Therefore, the search for new structures, polymeric matrices, and efficient methods of encapsulation of these compounds is of great interest to increase their addition to food products. In this work, betalains were extracted from red beetroot. Betacyanin and betaxanthin contents were quantified. Subsequently, these compounds were successfully encapsulated into the core of coaxial electrosprayed capsules composed of hydroxypropyl methylcellulose (HPMC) and gelatin (G). The effect of incorporating the carbohydrate and the protein both in the core or shell structures was studied to elucidate the best composition for betalain protection. Morphological, optical, and structural properties were analyzed to understand the effect of the incorporation of the bioactive compounds in the morphology, color, and chemical interactions between components of resulting electrosprayed capsules. The results of the thermogravimetric and encapsulation efficiency analysis coincided that the incorporation of beetroot extract in G in the core and HPMC in the shell resulted in the structure with greater betalain protection. The effectiveness of the core/shell structure was confirmed for future food applications.

4.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904321

RESUMEN

The food industry has a current challenge of increasing the recycling of post-consumer plastics to reduce plastic waste towards a circular economy, especially flexible polypropylene, which is highly demanded in food packaging. However, recycling post-consumer plastics is limited because service life and reprocessing degrade their physical-mechanical properties and modify the migration of components from the recycled material to the food. This research evaluated the feasibility of valorization of post-consumer recycled flexible polypropylene (PCPP) by incorporating fumed nanosilica (NS). For this purpose, the effect of concentration and type (hydrophilic and hydrophobic) of NS on the morphological, mechanical, sealing, barrier and overall migration properties of PCPP films was studied. Incorporating NS improved Young's modulus and, more significantly, tensile strength at 0.5 wt% and 1 wt%, where a better particle dispersion was confirmed by EDS-SEM, but it diminished elongation at breakage of the films. Interestingly, NS tended to increase the seal strength of PCPP nanocomposite films more significantly at higher NS content, showing a seal failure of the adhesive peel type which is preferred for flexible packaging. NS at 1 wt% did not affect the water vapor and oxygen permeabilities of the films. Overall migration of PCPP and nanocomposites exceeded the limit value of 10 mg dm-2 allowed by European legislation at the studied concentrations of 1% and 4 wt%. Nonetheless, NS reduced the overall migration of PCPP from 17.3 to 15 mg dm-2 in all nanocomposites. In conclusion, PCPP with 1 wt% of hydrophobic NS presented an improved overall performance of the studied packaging properties.

5.
Polymers (Basel) ; 15(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904386

RESUMEN

Collection and mechanical recycling of post-consumer flexible polypropylene packaging is limited, principally due to polypropylene being very light-weight. Moreover, service life and thermal-mechanical reprocessing degrade PP and change its thermal and rheological properties according to the structure and provenance of recycled PP. This work determined the effect of incorporating two fumed nanosilica (NS) types on processability improvement of post-consumer recycled flexible polypropylene (PCPP) through ATR-FTIR, TGA, DSC, MFI and rheological analysis. Presence of trace polyethylene in the collected PCPP increased the thermal stability of the PP and was significantly maximized by NS addition. The onset decomposition temperature raised around 15 °C when 4 and 2 wt% of a non-treated and organically modified NS were used, respectively. NS acted as a nucleating agent and increased the crystallinity of the polymer, but the crystallization and melting temperatures were not affected. The processability of the nanocomposites was improved, observed as an increase in viscosity, storage and loss moduli with respect to the control PCPP, which were deteriorated due to chain scission during recycling. The highest recovery in viscosity and reduction in MFI were found for the hydrophilic NS due to a greater impact of hydrogen bond interactions between the silanol groups of this NS and the oxidized groups of the PCPP.

6.
Carbohydr Polym ; 261: 117849, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766345

RESUMEN

Core/shell electrospun mats based on cellulose acetate (CA) and polycaprolactone (PCL) were developed as novel active materials for releasing quercetin (Quer) and curcumin (Cur). The effect of polymeric uniaxial and coaxial electrospun systems and the chemical structures of Quer and Cur on the structural, thermal, and mass transfer properties of the developed mats were investigated. Release modelling indicated that the diffusion of the active agents from the uniaxial PCL fibers was highly dependent on the type of food simulant. Higher diffusion coefficients were obtained for both active agents in acid food simulant due to the higher swelling of the electrospun mats. In addition, CA/PCL coaxial structures slowed down the diffusion of both active agents into both food simulants. CA increased the retention of the active compounds in the polymer structure, resulting in partition coefficients values higher than the values obtained for uniaxial active PCL mats.

7.
Polymers (Basel) ; 13(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920864

RESUMEN

The design of multilayer systems is an innovative strategy to improve physical properties of biodegradable polymers and introduce functionality to the materials through the incorporation of an active compound into some of these layers. In this work, a trilayer film based on a sandwich of electrospun polycaprolactone (PCL) fibers (PCLé) containing quercetin (Q) and cellulose nanocrystals (CNC) between extruded polylactic acid (PLA) films was designed with the purpose of improving thermal and barrier properties and affording antioxidant activity to packaged foods. PCLé was successfully electrospun onto 70 µm-thick extruded PLA film followed by the assembling of a third 25 µm-thick commercial PLA film through hot pressing. Optical, morphological, thermal, and barrier properties were evaluated in order to study the effect of PCL layer and the addition of Q and CNC. Bilayer systems obtained after the electrospinning process of PCL onto PLA film were also evaluated. The release of quercetin from bi- and trilayer films to food simulants was also analyzed. Results evidenced that thermal treatment during thermo-compression melted PCL polymer and resulted in trilayer systems with barrier properties similar to single PLA film. Quercetin release from bi- and trilayer films followed a similar profile, but achieved highest value through the addition of CNC.

8.
Polymers (Basel) ; 13(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066956

RESUMEN

The deterioration of the physical-mechanical properties and loss of the chemical safety of plastics after consumption are topics of concern for food packaging applications. Incorporating nanoclays is an alternative to improve the performance of recycled plastics. However, properties and overall migration from polymer/clay nanocomposites to food require to be evaluated case-by-case. This work aimed to investigate the effect of organic modifier types of clays on the structural, thermal and mechanical properties and the overall migration of nanocomposites based on 50/50 virgin and recycled post-consumer polypropylene blend (VPP/RPP) and organoclays for food packaging applications. The clay with the most hydrophobic organic modifier caused higher thermal stability of the nanocomposites and greater intercalation of polypropylene between clay mineral layers but increased the overall migration to a fatty food simulant. This migration value was higher from the 50/50 VPP/RPP film than from VPP. Nonetheless, clays reduced the migration and even more when the clay had greater hydrophilicity because of lower interactions between the nanocomposite and the fatty simulant. Conversely, nanocomposites and VPP/RPP control films exhibited low migration values in the acid and non-acid food simulants. Regarding tensile parameters, elongation at break values of PP film significantly increased with RPP addition, but the incorporation of organoclays reduced its ductility to values closer to the VPP.

9.
Antioxidants (Basel) ; 10(12)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34943079

RESUMEN

The performance characteristics of polylactic acid (PLA) as an active food packaging film can be highly influenced by the incorporation of active agents (AAs) into PLA, and the type of processing technique. In this review, the effect of processing techniques and the addition of natural AAs on the properties related to PLA performance as a packaging material are summarized and described through a systematic analysis, giving new insights about the relation between processing techniques, types of AA, physical-mechanical properties, barriers, optical properties, compostability, controlled release, and functionalities in order to contribute to the progress made in designing antioxidant and antimicrobial PLA packaging films. The addition of AAs into PLA films affected their optical properties and influenced polymer chain reordering, modifying their thermal properties, functionality, and compostability in terms of the chemical nature of AAs. The mechanical and barrier performance of PLA was affected by the AA's dispersion degree and crystallinity changes resulting from specific processing techniques. In addition, hydrophobicity and AA concentration also modified the barrier properties of PLA. The release kinetics of AAs from PLA were tuned, modifying diffusion coefficient of the AAs in terms of the different physical properties of the films that resulted from specific processing techniques. Several developments based on the incorporation of antimicrobial and antioxidant substances into PLA have displayed outstanding activities for food protection against microbial growth and oxidation.

10.
Polymers (Basel) ; 11(12)2019 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779266

RESUMEN

The interest in the development of novel biodegradable composites has increased over last years, and multilayer composites allow the design of materials with functionality and improved properties. In this work, bilayer structures based on a coated zein layer containing quercetin and cellulose nanocrystals (CNC) over an extruded poly(lactic acid) (PLA) layer were developed and characterized. Bilayer composites were successfully obtained and presented a total thickness of approx. 90 µm. The coated zein layer and quercetin gave a yellowish tone to the composites. The incorporation of the zein layer containing CNC decreased the volatile release rate during thermal degradation. Regarding to mechanical properties, bilayer composites presented lower brittleness and greater ductility evidenced by a lower Young's modulus and higher elongation values. Water permeability values of bilayer composites greatly increased with humidity and the zein coated layer containing quercetin increased this effect. Experimental data of quercetin release kinetics from bilayer structures indicated a higher release for an alcoholic food system, and the incorporation of cellulose nanocrystals did not influence the quercetin diffusion process.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda