Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Am J Bot ; 102(3): 423-38, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25784476

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Recent molecular studies provide a phylogenetic framework and some dated nodes for the monocot genus Smilax. The Caribbean Havanensis group of Smilax is part of a well-supported "New World clade" with a few disjunct taxa in the Old World. Although the fossil record of the genus is rich, it has been difficult to assign fossil taxa to extant groups based on their preserved morphological characters.• METHODS: Leaf fossils from Europe and Asia Minor were studied comparatively and put into a phylogenetic and biogeographic context using a molecular phylogeny of the genus.• KEY RESULTS: Fossils from the early Miocene of Anatolia represent a new species of Smilax with systematic affinities with the Havanensis group. The leaf type encountered in the fossil species is exclusively found in species of the Havanensis group among all modern Smilax. Scattered fossils of this type from the Miocene of Greece and Austria, previously referred to Quercus (Fagaceae), Ilex (Aquifoliaceae), and Mahonia (Berberidaceae) also belong to the new species.• CONCLUSIONS: The new Smilax provides first fossil evidence of the Havanensis group and proves that this group had a western Eurasian distribution during the Miocene. The age of the fossils is in good agreement with the (molecular-based) purported split between the Havanensis and Hispida groups within Smilax. The Miocene Smilax provides evidence that all four subclades within the "New World clade" had a disjunct intercontinental distribution during parts of the Neogene involving trans-Atlantic crossings (via floating islands or the North Atlantic land bridge) and the Beringia land bridge.


Asunto(s)
Evolución Biológica , Fósiles , Dispersión de las Plantas , Smilax/clasificación , Europa (Continente) , Filogenia , Smilax/anatomía & histología , Turquía
2.
R Soc Open Sci ; 7(5): 192067, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32537204

RESUMEN

The late Miocene is marked by pronounced environmental changes and the appearance of strong temperature and precipitation seasonality. Although environmental heterogeneity is to be expected during this time, it is challenging to reconstruct palaeoenvironments using plant fossils. We investigated leaves and dispersed spores/pollen from 6.4 to 6 Ma strata in the intermontane Florina-Ptolemais-Servia Basin (FPS) of northwestern Greece. To assess how well plant fossils reflect the actual vegetation of the FPS, we assigned fossil taxa to biomes providing a measure for environmental heterogeneity. Additionally, the palynological assemblage was compared with pollen spectra from modern lake sediments to assess biases in spore/pollen representation in the pollen record. We found a close match of the Vegora assemblage with modern Fagus-Abies forests of Turkey. Using taxonomic affinities of leaf fossils, we further established close similarities of the Vegora assemblage with modern laurophyllous oak forests of Afghanistan. Finally, using information from sedimentary environment and taphonomy, we distinguished local and distantly growing vegetation types. We then subjected the plant assemblage of Vegora to different methods of climate reconstruction and discussed their potentials and limitations. Leaf and spore/pollen records allow accurate reconstructions of palaeoenvironments in the FPS, whereas extra-regional vegetation from coastal lowlands is probably not captured.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda