Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proteomics ; : e2300063, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37654087

RESUMEN

Lipids play a significant role in maintaining central nervous system (CNS) structure and function, and the dysregulation of lipid metabolism is known to occur in many neurological disorders, including Alzheimer's disease. Here we review what is currently known about lipid dyshomeostasis in Alzheimer's disease. We propose that small extracellular vesicle (sEV) lipids may provide insight into the pathophysiology and progression of Alzheimer's disease. This stems from the recognition that sEV likely contributes to disease pathogenesis, but also an understanding that sEV can serve as a source of potential biomarkers. While the protein and RNA content of sEV in the CNS diseases have been studied extensively, our understanding of the lipidome of sEV in the CNS is still in its infancy.

2.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446130

RESUMEN

Many parasitic worms have a major adverse impact on human and animal populations worldwide due to the chronicity of their infections. There is a growing body of evidence indicating that extracellular vesicles (EVs) are intimately involved in modulating (suppressing) inflammatory/immune host responses and parasitism. As one of the most pathogenic nematodes of livestock animals, Haemonchus contortus is an ideal model system for EV exploration. Here, employing a multi-step enrichment process (in vitro culture, followed by ultracentrifugation, size exclusion and filtration), we enriched EVs from H. contortus and undertook the first comprehensive (qualitative and quantitative) multi-omic investigation of EV proteins and lipids using advanced liquid chromatography-mass spectrometry and informatics methods. We identified and quantified 561 proteins and 446 lipids in EVs and compared these molecules with those of adult worms. We identified unique molecules in EVs, such as proteins linked to lipid transportation and lipid species (i.e., sphingolipids) associated with signalling, indicating the involvement of these molecules in parasite-host cross-talk. This work provides a solid starting point to explore the functional roles of EV-specific proteins and lipids in modulating parasite-host cross-talk, and the prospect of finding ways of disrupting or interrupting this relationship to suppress or eliminate parasite infection.


Asunto(s)
Vesículas Extracelulares , Haemonchus , Parásitos , Animales , Humanos , Haemonchus/química , Haemonchus/metabolismo , Proteoma/metabolismo , Lipidómica , Lípidos
3.
Crit Rev Clin Lab Sci ; 57(4): 227-252, 2019 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-31865806

RESUMEN

Research on the role of extracellular vesicles (EVs) in disease pathogenesis has been rapidly growing over the last two decades. As EVs can mediate intercellular communication, they can ultimately facilitate both normal and pathological processes through the delivery of their bioactive cargo, which may include nucleic acids, proteins and lipids. EVs have emerged as important regulators of brain tumors, capable of transferring oncogenic proteins, receptors, and small RNAs that may support brain tumor progression, including in the most common type of brain cancer, glioma. Investigating the role of EVs in glioma is crucial, as the most malignant glioma, glioblastoma (GBM), is incurable with a dismal median survival of 12-15 months. EV research in GBM has primarily focused on circulating brain tumor-derived vesicles in biofluids, such as blood and cerebrospinal fluid (CSF), investigating their potential as diagnostic and prognostic biomarkers. Gaining a greater understanding of the role of EVs and their cargo in brain tumor progression may contribute to the discovery of novel diagnostics and therapeutics. In this review, we summarize the known and emerging functions of EVs in glioma biology and pathogenesis, as well as their emerging biomarker potential.

4.
Crit Rev Clin Lab Sci ; 53(2): 121-31, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26479834

RESUMEN

Exosomes are small, biologically active extracellular vesicles and over the last decade, both stromal and tumour-derived exosomes (TDE) have been implicated in cancer onset, progression and metastases. Cancer is a complex disease that is underpinned by several "cancer hallmarks", originally described by Hanahan and Weinberg in 2000 and then revised in 2011. The hallmarks of cancer comprise six biological capabilities, along with two emerging hallmarks and two enabling characteristics that facilitate tumour growth and metastatic dissemination. Ample evidence supports a clear role for TDE in four of the original biological hallmarks (sustaining proliferative signalling, resisting cell death, inducing angiogenesis and activating invasion and metastases). A less-defined role exists for TDE in evading growth suppressors, and currently, there is no evidence to suggest a role for TDE in enabling replicative immortality. TDE are intimately involved in the newly defined hallmarks of cancer and enabling characteristics, most evidently in immune inhibition and tumour-promoting inflammation, which ultimately enable escape from immune destruction and tumour progression. Herein, we discuss the role of TDE in the context of the hallmarks and enabling characteristics of cancer as defined by Hanahan and Weinberg.


Asunto(s)
Exosomas/metabolismo , Neoplasias/metabolismo , Animales , Muerte Celular , Metabolismo Energético , Humanos , Evasión Inmune , Neoplasias/irrigación sanguínea , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica , Transducción de Señal
5.
Int J Mol Sci ; 17(2): 173, 2016 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-26861304

RESUMEN

Growing evidence indicates that small extracellular vesicles, called exosomes, are prominent mediators of neurodegenerative diseases such as prion, Alzheimer's and Parkinson's disease. Exosomes contain neurodegenerative disease associated proteins such as the prion protein, ß-amyloid and α-synuclein. Only demonstrated so far in vivo with prion disease, exosomes are hypothesised to also facilitate the spread of ß-amyloid and α-synuclein from their cells of origin to the extracellular environment. In the current review, we will discuss the role of exosomes in Alzheimer's and Parkinson's disease including their possible contribution to disease propagation and pathology and highlight their utility as a diagnostic in neurodegenerative disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores , Humanos , Enfermedad de Parkinson/terapia , Pliegue de Proteína , Transporte de Proteínas , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
6.
Brain Commun ; 6(2): fcae100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585667

RESUMEN

Monoclonal antibodies have emerged as a leading therapeutic agent for the treatment of disease, including Alzheimer's disease. In the last year, two anti-amyloid monoclonal antibodies, lecanemab and aducanumab, have been approved in the USA for the treatment of Alzheimer's disease, whilst several tau-targeting monoclonal antibodies are currently in clinical trials. Such antibodies, however, are expensive and timely to produce and require frequent dosing regimens to ensure disease-modifying effects. Synthetic in vitro-transcribed messenger RNA encoding antibodies for endogenous protein expression holds the potential to overcome many of the limitations associated with protein antibody production. Here, we have generated synthetic in vitro-transcribed messenger RNA encoding a tau-specific antibody as a full-sized immunoglobulin and as a single-chain variable fragment. In vitro transfection of human neuroblastoma SH-SY5Y cells demonstrated the ability of the synthetic messenger RNA to be translated into a functional tau-specific antibody. Furthermore, we show that the translation of the tau-specific single-chain variable fragment as an intrabody results in the specific engagement of intracellular tau. This work highlights the utility of messenger RNA for the delivery of antibody therapeutics, including intrabodies, for the targeting of tau in Alzheimer's disease and other tauopathies.

7.
J Parkinsons Dis ; 14(2): 227-244, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427502

RESUMEN

Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Animales , Humanos , Enfermedad de Parkinson/patología , Membrana Externa Bacteriana/patología , Inflamación/complicaciones , Microbioma Gastrointestinal/fisiología , Mamíferos
8.
J Extracell Vesicles ; 13(1): e12397, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38158550

RESUMEN

Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world-wide survey to ISEV members to assess methods considered 'best practices' for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies.


Asunto(s)
Vesículas Extracelulares , Biomarcadores/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo , Reproducibilidad de los Resultados
9.
J Biol Chem ; 287(32): 26840-53, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22685292

RESUMEN

One of the key pathological hallmarks of Alzheimer disease (AD) is the accumulation of the APP-derived amyloid ß peptide (Aß) in the brain. Altered copper homeostasis has also been reported in AD patients and is thought to increase oxidative stress and to contribute to toxic Aß accumulation and regulate APP metabolism. The potential involvement of the N-terminal APP copper binding domain (CuBD) in these events has not been investigated. Based on the tertiary structure of the APP CuBD, we examined the histidine residues of the copper binding site (His(147), His(149), and His(151)). We report that histidines 149 and 151 are crucial for CuBD stability and APP metabolism. Co-mutation of the APP CuBD His(149) and His(151) to asparagine decreased APP proteolytic processing, impaired APP endoplasmic reticulum-to-Golgi trafficking, and promoted aberrant APP oligomerization in HEK293 cells. Expression of the triple H147N/H149N/H151N-APP mutant led to up-regulation of the unfolded protein response. Using recombinant protein encompassing the APP CuBD, we found that insertion of asparagines at positions 149 and 151 altered the secondary structure of the domain. This study identifies two APP CuBD residues that are crucial for APP metabolism and suggests an additional role of this domain in APP folding and stability besides its previously identified copper binding activity. These findings are of major significance for the design of novel AD therapeutic drugs targeting this APP domain.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Cobre/metabolismo , Histidina/metabolismo , Precursor de Proteína beta-Amiloide/química , Sitios de Unión , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunohistoquímica , Mutación
10.
FASEB J ; 26(7): 2930-40, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22490781

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The proteolytic processing of the amyloid precursor protein (APP) into the ß-amyloid (Aß) peptide is a central event in AD. While the pathway that generates Aß is well described, many questions remain concerning general APP metabolism and its metabolites. It is becoming clear that the amino-terminal region of APP can be processed to release small N-terminal fragments (NTFs). The purpose of this study was to investigate the occurrence and generation of APP NTFs in vivo and in cell culture (SH-SY5Y) in order to delineate the cellular pathways implicated in their generation. We were able to detect 17- to 28-kDa APP NTFs in human and mouse brain tissue that are distinct from N-APP fragments previously reported. We show that the 17- to 28-kDa APP NTFs were highly expressed in mice from the age of 2 wk to adulthood. SH-SY5Y studies indicate the generation of APP NTFs involves a novel APP processing pathway, regulated by protein kinase C, but independent of α-secretase or ß-secretase 1 (BACE) activity. These results identify a novel, developmentally regulated APP processing pathway that may play an important role in the physiological function of APP.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Fragmentos de Péptidos/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/deficiencia , Precursor de Proteína beta-Amiloide/genética , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Tretinoina/farmacología
11.
Cell Oncol (Dordr) ; 46(4): 909-931, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37014551

RESUMEN

PURPOSE: The therapeutic efficacy of radiotherapy/temozolomide treatment for glioblastoma (GBM) is limited by the augmented invasiveness mediated by invadopodia activity of surviving GBM cells. As yet, however the underlying mechanisms remain poorly understood. Due to their ability to transport oncogenic material between cells, small extracellular vesicles (sEVs) have emerged as key mediators of tumour progression. We hypothesize that the sustained growth and invasion of cancer cells depends on bidirectional sEV-mediated cell-cell communication. METHODS: Invadopodia assays and zymography gels were used to examine the invadopodia activity capacity of GBM cells. Differential ultracentrifugation was utilized to isolate sEVs from conditioned medium and proteomic analyses were conducted on both GBM cell lines and their sEVs to determine the cargo present within the sEVs. In addition, the impact of radiotherapy and temozolomide treatment of GBM cells was studied. RESULTS: We found that GBM cells form active invadopodia and secrete sEVs containing the matrix metalloproteinase MMP-2. Subsequent proteomic studies revealed the presence of an invadopodia-related protein sEV cargo and that sEVs from highly invadopodia active GBM cells (LN229) increase invadopodia activity in sEV recipient GBM cells. We also found that GBM cells displayed increases in invadopodia activity and sEV secretion post radiation/temozolomide treatment. Together, these data reveal a relationship between invadopodia and sEV composition/secretion/uptake in promoting the invasiveness of GBM cells. CONCLUSIONS: Our data indicate that sEVs secreted by GBM cells can facilitate tumour invasion by promoting invadopodia activity in recipient cells, which may be enhanced by treatment with radio-chemotherapy. The transfer of pro-invasive cargos may yield important insights into the functional capacity of sEVs in invadopodia.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Podosomas , Humanos , Glioblastoma/patología , Temozolomida/farmacología , Podosomas/metabolismo , Podosomas/patología , Proteómica
12.
Neurotherapeutics ; 19(6): 1966-1975, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36175781

RESUMEN

Hyposmia is a prevalent prodromal feature of Parkinson's disease (PD), though the neuropathology that underlies this symptom is poorly understood. Unlike the substantia nigra, the status of metal homeostasis in the olfactory bulbs has not been characterized in PD. Given the increasing interest in metal modulation as a therapeutic avenue in PD, we sought to investigate bulbar metals and the effect of AT434 (formerly PBT434) an orally bioavailable, small molecule modulator of metal homeostasis on hyposmia in a mouse model of parkinsonism (the tau knockout (tau-/-) mouse). 5.5 (pre-hyposmia) and 13.5-month-old (pre-motor) mice were dosed with ATH434 (30 mg/kg/day, oral gavage) for 6 weeks. Animals then underwent behavioral analysis for olfactory and motor phenotypes. The olfactory bulbs and the substantia nigra were then collected and analyzed for metal content, synaptic markers, and dopaminergic cell number. ATH434 was able to prevent the development of hyposmia in young tau-/- mice, which coincided with a reduction in bulbar iron and copper levels, an increase in synaptophysin, and a reduction in soluble α-synuclein. ATH434 was able to prevent the development of motor impairment in aged tau-/- mice, which coincided with a reduction in iron levels and reduced neurodegeneration in the substantia nigra. These data implicate metal dyshomeostasis in parkinsonian olfactory deficits, and champion a potential clinical benefit of ATH434 in both prodromal and clinical stages of PD.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Animales , Ratones , Anosmia , alfa-Sinucleína/genética , Trastornos Parkinsonianos/complicaciones , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/patología , Sustancia Negra/metabolismo , Enfermedad de Parkinson/genética , Modelos Animales de Enfermedad , Hierro
13.
Pharmaceutics ; 13(12)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34959296

RESUMEN

For the treatment of neurological diseases, achieving sufficient exposure to the brain parenchyma is a critical determinant of drug efficacy. The blood-brain barrier (BBB) functions to tightly control the passage of substances between the bloodstream and the central nervous system, and as such poses a major obstacle that must be overcome for therapeutics to enter the brain. Monoclonal antibodies have emerged as one of the best-selling treatment modalities available in the pharmaceutical market owing to their high target specificity. However, it has been estimated that only 0.1% of peripherally administered antibodies can cross the BBB, contributing to the low success rate of immunotherapy seen in clinical trials for the treatment of neurological diseases. The development of new strategies for antibody delivery across the BBB is thereby crucial to improve immunotherapeutic efficacy. Here, we discuss the current strategies that have been employed to enhance antibody delivery across the BBB. These include (i) focused ultrasound in combination with microbubbles, (ii) engineered bi-specific antibodies, and (iii) nanoparticles. Furthermore, we discuss emerging strategies such as extracellular vesicles with BBB-crossing properties and vectored antibody genes capable of being encapsulated within a BBB delivery vehicle.

14.
J Extracell Vesicles ; 10(7): e12089, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34012516

RESUMEN

Lipid dyshomeostasis is associated with the most common form of dementia, Alzheimer's disease (AD). Substantial progress has been made in identifying positron emission tomography and cerebrospinal fluid biomarkers for AD, but they have limited use as front-line diagnostic tools. Extracellular vesicles (EVs) are released by all cells and contain a subset of their parental cell composition, including lipids. EVs are released from the brain into the periphery, providing a potential source of tissue and disease specific lipid biomarkers. However, the EV lipidome of the central nervous system is currently unknown and the potential of brain-derived EVs (BDEVs) to inform on lipid dyshomeostasis in AD remains unclear. The aim of this study was to reveal the lipid composition of BDEVs in human frontal cortex, and to determine whether BDEVs have an altered lipid profile in AD. Using semi-quantitative mass spectrometry, we describe the BDEV lipidome, covering four lipid categories, 17 lipid classes and 692 lipid molecules. BDEVs were enriched in glycerophosphoserine (PS) lipids, a characteristic of small EVs. Here we further report that BDEVs are enriched in ether-containing PS lipids, a finding that further establishes ether lipids as a feature of EVs. BDEVs in the AD frontal cortex offered improved detection of dysregulated lipids in AD over global lipid profiling of this brain region.  AD BDEVs had significantly altered glycerophospholipid and sphingolipid levels, specifically increased plasmalogen glycerophosphoethanolamine and decreased polyunsaturated fatty acyl containing lipids, and altered amide-linked acyl chain content in sphingomyelin and ceramide lipids relative to CTL. The most prominent alteration was a two-fold decrease in lipid species containing anti-inflammatory/pro-resolving docosahexaenoic acid. The in-depth lipidome analysis provided in this study highlights the advantage of EVs over more complex tissues for improved detection of dysregulated lipids that may serve as potential biomarkers in the periphery.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Vesículas Extracelulares/fisiología , Lóbulo Frontal/metabolismo , Anciano , Enfermedad de Alzheimer/fisiopatología , Biomarcadores , Encéfalo/metabolismo , Sistema Nervioso Central , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Glicerofosfolípidos/metabolismo , Homeostasis , Humanos , Metabolismo de los Lípidos/fisiología , Lipidómica/métodos , Lípidos/análisis , Masculino , Espectrometría de Masas/métodos , Esfingolípidos/metabolismo , Tomografía Computarizada por Rayos X/métodos
15.
ACS Chem Neurosci ; 12(19): 3719-3732, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34519476

RESUMEN

Protein citrullination (deimination of arginine residue) is a well-known biomarker of inflammation. Elevated protein citrullination has been shown to colocalize with extracellular amyloid plaques in postmortem AD patient brains. Amyloid-ß (Aß) peptides which aggregate and accumulate in the plaques of Alzheimer's disease (AD) have sequential N-terminal truncations and multiple post-translational modifications (PTM) such as isomerization, pyroglutamate formation, phosphorylation, nitration, and dityrosine cross-linking. However, no conclusive biochemical evidence exists whether citrullinated Aß is present in AD brains. In this study, using high-resolution mass spectrometry, we have identified citrullination of Aß in sporadic and familial AD brains by characterizing the tandem mass spectra of endogenous N-truncated citrullinated Aß peptides. Our quantitative estimations demonstrate that ∼ 35% of pyroglutamate3-Aß pool was citrullinated in plaques in the sporadic AD temporal cortex and ∼ 22% in the detergent-insoluble frontal cortex fractions. Similarly, hypercitrullinated pyroglutamate3-Aß (∼ 30%) was observed in both the detergent-soluble as well as insoluble Aß pool in familial AD cases. Our results indicate that a common mechanism for citrullination of Aß exists in both the sporadic and familial AD. We establish that citrullination of Aß is a remarkably common PTM, closely associated with pyroglutamate3-Aß formation and its accumulation in AD. This may have implications for Aß toxicity, autoantigenicity of Aß, and may be relevant for the design of diagnostic assays and therapeutic targeting.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Citrulinación , Humanos , Placa Amiloide
16.
Cells ; 9(7)2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708779

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by the deposition of misfolded proteins in the motor cortex and motor neurons. Although a multitude of ALS-associated mutated proteins have been identified, several have been linked to small extracellular vesicles such as exosomes involved in cell-cell communication. This study aims to determine the proteome of extracellular vesicles isolated from the motor cortex of ALS subjects and to identify novel ALS-associated deregulated proteins. Motor cortex extracellular vesicles (MCEVs) were isolated from human postmortem ALS (n = 10) and neurological control (NC, n = 5) motor cortex brain tissues and the MCEVs protein content subsequently underwent mass spectrometry analysis, allowing for a panel of ALS-associated proteins to be identified. This panel consists of 16 statistically significant differentially packaged proteins identified in the ALS MCEVs. This includes several upregulated RNA-binding proteins which were determined through pathway analysis to be associated with stress granule dynamics. The identification of these RNA-binding proteins in the ALS MCEVs suggests there may be a relationship between ALS-associated stress granules and ALS MCEV packaging, highlighting a potential role for small extracellular vesicles such as exosomes in the pathogenesis of ALS and as potential peripheral biomarkers for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Vesículas Extracelulares/metabolismo , Corteza Motora/metabolismo , Cambios Post Mortem , Proteoma/metabolismo , Estudios de Casos y Controles , Exosomas/metabolismo , Vesículas Extracelulares/ultraestructura , Ontología de Genes , Humanos , Lisosomas/metabolismo , Modelos Biológicos , Mapas de Interacción de Proteínas
17.
J Extracell Vesicles ; 9(1): 1766822, 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32922692

RESUMEN

Alzheimer's disease is a progressive neurodegenerative disorder, with the strongest disease-associated changes observed at clinical or end-stage disease. Transcriptomic deregulation of miRNA expression can spread via "horizontal" RNA transfer through extracellular vesicles (EVs) to act in conjunction with proteins, leading to changes in mRNA, which can provide early signals to indicate forthcoming neuropathological changes in the brain. Here, we analysed the small RNA content, in particular, miRNA, contained in brain-derived EVs isolated from the frontal cortex of Alzheimer's subjects (n = 8) and neurological control subjects (n = 9). Brain-derived EVs were found to contain an upregulation of disease-associated miRNA. RNA species from brain-derived EVs were correlated with miRNA profiles obtained from matching total brain homogenate. These results provide a blueprint into the biological pathways potentially effected during disease that may be assisted by brain-derived EV RNA horizontal transfer.We also correlated the miRNA changes in the brain with those detected in peripheral EVs collected from serum of Alzheimer's disease patients (n = 23, and healthy controls, n = 23) and revealed a panel of miRNA that could be used as a liquid brain biopsy. Overall, our study provides the first interrogation of the small RNA contents in brain-derived EVs and how they could be used to understand the early pathological changes in Alzheimer's disease which will benefit the development of an early diagnostic blood test.

18.
J Extracell Vesicles ; 9(1): 1785746, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32944174

RESUMEN

Extracellular vesicles (EVs) are involved in a wide range of physiological and pathological processes by shuttling material out of and between cells. Tissue EVs may thus lend insights into disease mechanisms and also betray disease when released into easily accessed biological fluids. Since brain-derived EVs (bdEVs) and their cargo may serve as biomarkers of neurodegenerative diseases, we evaluated modifications to a published, rigorous protocol for separation of EVs from brain tissue and studied effects of processing variables on quantitative and qualitative outcomes. To this end, size exclusion chromatography (SEC) and sucrose density gradient ultracentrifugation were compared as final separation steps in protocols involving stepped ultracentrifugation. bdEVs were separated from brain tissues of human, macaque, and mouse. Effects of tissue perfusion and a model of post-mortem interval (PMI) before final bdEV separation were probed. MISEV2018-compliant EV characterization was performed, and both small RNA and protein profiling were done. We conclude that the modified, SEC-employing protocol achieves EV separation efficiency roughly similar to a protocol using gradient density ultracentrifugation, while decreasing operator time and, potentially, variability. The protocol appears to yield bdEVs of higher purity for human tissues compared with those of macaque and, especially, mouse, suggesting opportunities for optimization. Where possible, perfusion should be performed in animal models. The interval between death/tissue storage/processing and final bdEV separation can also affect bdEV populations and composition and should thus be recorded for rigorous reporting. Finally, different populations of EVs obtained through the modified method reported herein display characteristic RNA and protein content that hint at biomarker potential. To conclude, this study finds that the automatable and increasingly employed technique of SEC can be applied to tissue EV separation, and also reveals more about the importance of species-specific and technical considerations when working with tissue EVs. These results are expected to enhance the use of bdEVs in revealing and understanding brain disease.

19.
J Alzheimers Dis ; 77(4): 1705-1715, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32925070

RESUMEN

BACKGROUND: Alterations in the methionine cycle and abnormal tau phosphorylation are implicated in many neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. rTg4510 mice express mutant human P301L tau and are a model of tau hyperphosphorylation. The cognitive deficit seen in these animals correlates with a burden of hyperphosphorylated tau and is a model to test therapies aimed at lowering phosphorylated tau. OBJECTIVE: This study aimed to increase protein phosphatase 2A activity through supplementation of S-adenosylmethionine and analyze the effect on spatial memory and tau in treated animals. METHODS: 6-month-old rTg4510 mice were treated with 100 mg/kg S-adenosylmethionine by oral gavage for 3 weeks. Spatial recognition memory was tested in the Y-maze. Alterations to phosphorylated tau and protein phosphatase 2A were explored using immunohistochemistry, western blot, and enzyme-linked immunosorbent assays. RESULTS: Treatment with S-adenosylmethionine increased the Y-maze novel arm exploration time and increased both the expression and activity of protein phosphatase 2A. Furthermore, treatment reduced the number of AT8 positive neurons and reduced the expression of phosphorylated tau (Ser202/Thr205). S-adenosylmethionine contributes to multiple pathways in neuronal homeostasis and neurodegeneration. CONCLUSION: This study shows that supplementation with S-adenosylmethionine stabilizes the heterotrimeric form of PP2A resulting in an increase the enzymatic activity, a reduced level of pathological tau, and improved cognition.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Proteína Fosfatasa 2/metabolismo , S-Adenosilmetionina/administración & dosificación , Proteínas tau/antagonistas & inhibidores , Proteínas tau/metabolismo , Administración Oral , Animales , Disfunción Cognitiva/genética , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Estabilidad Proteica/efectos de los fármacos
20.
FASEB J ; 22(5): 1469-78, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18171695

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia and is associated with the deposition of the 39- to 43-amino acid beta-amyloid peptide (Abeta) in the brain. C-terminal fragments (CTFs) of amyloid precursor protein (APP) can accumulate in endosomally derived multivesicular bodies (MVBs). These intracellular structures contain intraluminal vesicles that are released from the cell as exosomes when the MVB fuses with the plasma membrane. Here we have investigated the role of exosomes in the processing of APP and show that these vesicles contain APP-CTFs, as well as Abeta. In addition, inhibition of gamma-secretase results in a significant increase in the amount of alpha- and beta-secretase cleavage, further increasing the amount of APP-CTFs contained within these exosomes. We identify several key members of the secretase family of proteases (BACE, PS1, PS2, and ADAM10) to be localized in exosomes, suggesting they may be a previously unidentified site of APP cleavage. These results provide further evidence for a novel pathway in which APP fragments are released from cells and have implications for the analysis of APP processing and diagnostics for Alzheimer's disease.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/metabolismo , Vesículas Citoplasmáticas/fisiología , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/biosíntesis , Animales , Células CHO , Carbamatos/farmacología , Bovinos , Cricetinae , Cricetulus , Medios de Cultivo Condicionados/farmacología , Dipéptidos/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda