Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Acta Neuropathol ; 143(1): 33-53, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34719765

RESUMEN

Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-ß (Aß) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aß toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.


Asunto(s)
Proteínas de Homeodominio/genética , Tauopatías/genética , Tauopatías/patología , Proteínas Supresoras de Tumor/genética , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Animales , Estudios de Cohortes , Drosophila , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple
2.
Acta Neuropathol Commun ; 12(1): 135, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154163

RESUMEN

Progressive supranuclear palsy (PSP) is a neurodegenerative movement and cognitive disorder characterized by abnormal accumulation of the microtubule-associated protein tau in the brain. Biochemically, inclusions in PSP are enriched for tau proteoforms with four microtubule-binding domain repeats (4R), an isoform that arises from alternative tau pre-mRNA splicing. While preferential aggregation and reduced degradation of 4R tau protein is thought to play a role in inclusion formation and toxicity, an alternative hypothesis is that altered expression of tau mRNA isoforms plays a causal role. This stems from the observation that PSP is associated with common variation in the tau gene (MAPT) at the 17q21.31 locus which contains low copy number repeats flanking a large recurrent genomic inversion. The complex genomic structural changes at the locus give rise to two dominant haplotypes, termed H1 and H2, that have the potential to markedly influence gene expression. Here, we explored haplotype-dependent differences in gene expression using a bulk RNA-seq dataset derived from human post-mortem brain tissue from PSP (n = 84) and controls (n = 77) using a rigorous computational pipeline, including alternative pre-mRNA splicing. We found 3579 differentially expressed genes in the temporal cortex and 10,011 in the cerebellum. We also found 7214 differential splicing events in the temporal cortex and 18,802 in the cerebellum. In the cerebellum, total tau mRNA levels and the proportion of transcripts encoding 4R tau were significantly increased in PSP compared to controls. In the temporal cortex, the proportion of reads that expressed 4R tau was increased in cases compared to controls. 4R tau mRNA levels were significantly associated with the H1 haplotype in the temporal cortex. Further, we observed a marked haplotype-dependent difference in KANSL1 expression that was strongly associated with H1 in both brain regions. These findings support the hypothesis that sporadic PSP is associated with haplotype-dependent increases in 4R tau mRNA that might play a causal role in this disorder.


Asunto(s)
Haplotipos , Parálisis Supranuclear Progresiva , Transcriptoma , Proteínas tau , Humanos , Parálisis Supranuclear Progresiva/genética , Parálisis Supranuclear Progresiva/patología , Parálisis Supranuclear Progresiva/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Encéfalo/metabolismo , Encéfalo/patología , Persona de Mediana Edad
3.
bioRxiv ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39314329

RESUMEN

Amyloid-beta (Aß) plaques and surrounding glial activation are prominent histopathological hallmarks of Alzheimer's Disease (AD). However, it is unclear how Aß plaques interact with surrounding glial cells in the human brain. Here, we applied spatial transcriptomics (ST) and immunohistochemistry (IHC) for Aß, GFAP, and IBA1 to acquire data from 258,987 ST spots within 78 postmortem brain sections of 21 individuals. By coupling ST and adjacent-section IHC, we showed that low Aß spots exhibit transcriptomic profiles indicative of greater neuronal loss than high Aß spots, and high-glia spots present transcriptomic changes indicative of more significant inflammation and neurodegeneration. Furthermore, we observed that this ST glial response bears signatures of reported mouse gene modules of plaque-induced genes (PIG), oligodendrocyte (OLIG) response, disease-associated microglia (DAM), and disease-associated astrocytes (DAA), as well as different microglia (MG) states identified in human AD brains, indicating that multiple glial cell states arise around plaques and contribute to local immune response. We then validated the observed effects of Aß on cell apoptosis and plaque-surrounding glia on inflammation and synaptic loss using IHC. In addition, transcriptomic changes of iPSC-derived microglia-like cells upon short-interval Aß treatment mimic the ST glial response and mirror the reported activated MG states. Our results demonstrate an exacerbation of synaptic and neuronal loss in low-Aß or high-glia areas, indicating that microglia response to Aß-oligomers likely initiates glial activation in plaque-glia niches. Our study lays the groundwork for future pathology genomics studies, opening the door for investigating pathological heterogeneity and causal effects in neurodegenerative diseases.

4.
Epigenetics ; 19(1): 2392050, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39169872

RESUMEN

The cortical epigenetic clock was developed in brain tissue as a biomarker of brain aging. As one way to identify mechanisms underlying aging, we conducted a GWAS of cortical age. We leveraged postmortem cortex tissue and genotyping array data from 694 participants of the Rush Memory and Aging Project and Religious Orders Study (ROSMAP; 11000,000 SNPs), and meta-analysed ROSMAP with 522 participants of Brains for Dementia Research (5,000,000 overlapping SNPs). We confirmed results using eQTL (cortical bulk and single nucleus gene expression), cortical protein levels (ROSMAP), and phenome-wide association studies (clinical/neuropathologic phenotypes, ROSMAP). In the meta-analysis, the strongest association was rs4244620 (p = 1.29 × 10-7), which also exhibited FDR-significant cis-eQTL effects for CD46 in bulk and single nucleus (microglia, astrocyte, oligodendrocyte, neuron) cortical gene expression. Additionally, rs4244620 was nominally associated with lower cognition, faster slopes of cognitive decline, and greater Parkinsonian signs (n ~ 1700 ROSMAP with SNP/phenotypic data; all p ≤ 0.04). In ROSMAP alone, the top SNP was rs4721030 (p = 8.64 × 10-8) annotated to TMEM106B and THSD7A. Further, in ROSMAP (n = 849), TMEM106B and THSD7A protein levels in cortex were related to many phenotypes, including greater AD pathology and lower cognition (all p ≤ 0.0007). Overall, we identified converging evidence of CD46 and possibly TMEM106B/THSD7A for potential roles in cortical epigenetic clock age.


Asunto(s)
Envejecimiento , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Masculino , Envejecimiento/genética , Anciano , Anciano de 80 o más Años , Sitios de Carácter Cuantitativo , Corteza Cerebral/metabolismo , Encéfalo/metabolismo
5.
medRxiv ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39185527

RESUMEN

Advances have led to a greater understanding of the genetics of Alzheimer's Disease (AD). However, the gap between the predicted and observed genetic heritability estimates when using single nucleotide polymorphisms (SNPs) and small indel data remains. Large genomic rearrangements, known as structural variants (SVs), have the potential to account for this missing genetic heritability. By leveraging data from two ongoing cohort studies of aging and dementia, the Religious Orders Study and Rush Memory and Aging Project (ROS/MAP), we performed genome-wide association analysis testing around 20,000 common SVs from 1,088 participants with whole genome sequencing (WGS) data. A range of Alzheimer's Disease and Related Disorders (AD/ADRD) clinical and pathologic traits were examined. Given the limited sample size, no genome-wide significant association was found, but we mapped SVs across 81 AD risk loci and discovered 22 SVs in linkage disequilibrium (LD) with GWAS lead variants and directly associated with AD/ADRD phenotypes (nominal P < 0.05). The strongest association was a deletion of an Alu element in the 3'UTR of the TMEM106B gene. This SV was in high LD with the respective AD GWAS locus and was associated with multiple AD/ADRD phenotypes, including tangle density, TDP-43, and cognitive resilience. The deletion of this element was also linked to lower TMEM106B protein abundance. We also found a 22 kb deletion associated with depression in ROSMAP and bearing similar association patterns as AD GWAS SNPs at the IQCK locus. In addition, genome-wide scans allowed the identification of 7 SVs, with no LD with SNPs and nominally associated with AD/ADRD traits. This result suggests potentially new ADRD risk loci not discoverable using SNP data. Among these findings, we highlight a 5.6 kb duplication of coding regions of the gene C1orf186 at chromosome 1 associated with indices of cognitive impairment, decline, and resilience. While further replication in independent datasets is needed to validate these findings, our results support the potential roles of common structural variations in the pathogenesis of AD/ADRD.

6.
bioRxiv ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38854101

RESUMEN

The G2019S mutation in the leucine-rich repeat kinase 2 (LRRK2) gene is a major risk factor for the development of Parkinson's disease (PD). LRRK2, although ubiquitously expressed, is highly abundant in cells of the innate immune system. Given the importance of central and peripheral immune cells in the development of PD, we sought to investigate the consequences of the G2019S mutation on microglial and monocyte transcriptome and function. We have generated large-scale transcriptomic profiles of isogenic human induced microglial cells (iMGLs) and patient derived monocytes carrying the G2019S mutation under baseline culture conditions and following exposure to the proinflammatory factors IFNγ and LPS. We demonstrate that the G2019S mutation exerts a profound impact on the transcriptomic profile of these myeloid cells, and describe corresponding functional differences in iMGLs. The G2019S mutation led to an upregulation in lipid metabolism and phagolysosomal pathway genes in untreated and LPS/IFNγ stimulated iMGLs, which was accompanied by an increased phagocytic capacity of myelin debris. We also identified dysregulation of cell cycle genes, with a downregulation of the E2F4 regulon. Transcriptomic characterization of human-derived monocytes carrying the G2019S mutation confirmed alteration in lipid metabolism associated genes. Altogether, these findings reveal the influence of G2019S on the dysregulation of the myeloid cell transcriptome under proinflammatory conditions.

7.
bioRxiv ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37873223

RESUMEN

Microglia, the immune cells of the brain, are increasingly implicated in neurodegenerative disorders through genetic studies. However, how genetic risk factors for these diseases are related to microglial gene expression, microglial function, and ultimately disease, is still largely unknown. Microglia change rapidly in response to alterations in their cellular environment, which is regulated through changes in transcriptional programs, which are as yet poorly understood. Here, we compared the effects of a set of inflammatory and restorative stimuli (lipopolysaccharide, interferon-gamma, resiquimod, tumor necrosis factor-alpha, adenosine triphosphate, dexamethasone, and interleukin-4) on human microglial cells from 67 different donors (N = 398 samples) at the gene and transcript level. We show that microglia from different anatomical brain regions show distinct responses to inflammatory stimuli. We observed a greater overlap between human stimulated microglia and human monocytes than with mouse microglia. We define specific microglial signatures across conditions which are highly relevant for a wide range of biological functions and complex human diseases. Finally, we used our stimulation signatures to interpret associations from Alzheimer's disease (AD) genetic studies and microglia by integrating our inflammatory gene expression profiles with common genetic variants to map cis -expression QTLs (eQTLs). Together, we provide the most comprehensive transcriptomic database of the human microglia responsome. Highlights: RNA-sequencing of 398 human microglial samples exposed to six different triggers.Microglia from different anatomical regions show distinct stimulation responses.Responses in human microglia show a greater overlap with human monocytes than murine microglia.Mapping of response Quantitative Trait Loci identifies interactions between genotype and effect of stimulation on gene expression.Our atlas provides a reference map for interpreting microglia signatures in health and disease.

8.
Nat Neurosci ; 25(4): 504-514, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35288716

RESUMEN

Structural variants (SVs), which are genomic rearrangements of more than 50 base pairs, are an important source of genetic diversity and have been linked to many diseases. However, it remains unclear how they modulate human brain function and disease risk. Here we report 170,996 SVs discovered using 1,760 short-read whole genomes from aged adults and individuals with Alzheimer's disease. By applying quantitative trait locus (SV-xQTL) analyses, we quantified the impact of cis-acting SVs on histone modifications, gene expression, splicing and protein abundance in postmortem brain tissues. More than 3,200 SVs were associated with at least one molecular phenotype. We found reproducibility of 65-99% SV-eQTLs across cohorts and brain regions. SV associations with mRNA and proteins shared the same direction of effect in more than 87% of SV-gene pairs. Mediation analysis showed ~8% of SV-eQTLs mediated by histone acetylation and ~11% by splicing. Additionally, associations of SVs with progressive supranuclear palsy identified previously known and novel SVs.


Asunto(s)
Variación Estructural del Genoma , Sitios de Carácter Cuantitativo , Encéfalo , Genoma Humano , Humanos , Persona de Mediana Edad , Sitios de Carácter Cuantitativo/genética , Reproducibilidad de los Resultados , Secuenciación Completa del Genoma
9.
Mol Neurodegener ; 17(1): 52, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35978378

RESUMEN

BACKGROUND: Genetic mutations in beta-glucocerebrosidase (GBA) represent the major genetic risk factor for Parkinson's disease (PD). GBA participates in both the endo-lysosomal pathway and the immune response, two important mechanisms involved in the pathogenesis of PD. However, modifiers of GBA penetrance have not yet been fully elucidated. METHODS: We characterized the transcriptomic profiles of circulating monocytes in a population of patients with PD and healthy controls (CTRL) with and without GBA variants (n = 23 PD/GBA, 13 CTRL/GBA, 56 PD, 66 CTRL) and whole blood (n = 616 PD, 362 CTRL, 127 PD/GBA, 165 CTRL/GBA). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Ultrastructural characterization of isolated CD14+ monocytes in the four groups was also performed through electron microscopy. RESULTS: We observed hundreds of differentially expressed genes and dysregulated pathways when comparing manifesting and non-manifesting GBA mutation carriers. Specifically, when compared to idiopathic PD, PD/GBA showed dysregulation in genes involved in alpha-synuclein degradation, aging and amyloid processing. Gene-based outlier analysis confirmed the involvement of lysosomal, membrane trafficking, and mitochondrial processing in manifesting compared to non-manifesting GBA-carriers, as also observed at the ultrastructural levels. Transcriptomic results were only partially replicated in an independent cohort of whole blood samples, suggesting cell-type specific changes. CONCLUSIONS: Overall, our transcriptomic analysis of primary monocytes identified gene targets and biological processes that can help in understanding the pathogenic mechanisms associated with GBA mutations in the context of PD.


Asunto(s)
Glucosilceramidasa , Enfermedad de Parkinson , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Heterocigoto , Humanos , Monocitos/metabolismo , Mutación/genética , Enfermedad de Parkinson/metabolismo , Transcriptoma
10.
Nat Genet ; 54(1): 4-17, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34992268

RESUMEN

Microglia have emerged as important players in brain aging and pathology. To understand how genetic risk for neurological and psychiatric disorders is related to microglial function, large transcriptome studies are essential. Here we describe the transcriptome analysis of 255 primary human microglial samples isolated at autopsy from multiple brain regions of 100 individuals. We performed systematic analyses to investigate various aspects of microglial heterogeneities, including brain region and aging. We mapped expression and splicing quantitative trait loci and showed that many neurological disease susceptibility loci are mediated through gene expression or splicing in microglia. Fine-mapping of these loci nominated candidate causal variants that are within microglia-specific enhancers, finding associations with microglial expression of USP6NL for Alzheimer's disease and P2RY12 for Parkinson's disease. We have built the most comprehensive catalog to date of genetic effects on the microglial transcriptome and propose candidate functional variants in neurological and psychiatric disorders.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/metabolismo , Microglía/metabolismo , Envejecimiento/genética , Enfermedad de Alzheimer/metabolismo , Atlas como Asunto , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Humanos , Masculino , Enfermedad de Parkinson/metabolismo , Sitios de Carácter Cuantitativo , Empalme del ARN , Transcriptoma
11.
Nat Aging ; 1(9): 850-863, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-35005630

RESUMEN

An increasing number of identified Parkinson's disease (PD) risk loci contain genes highly expressed in innate immune cells, yet their role in pathology is not understood. We hypothesize that PD susceptibility genes modulate disease risk by influencing gene expression within immune cells. To address this, we have generated transcriptomic profiles of monocytes from 230 individuals with sporadic PD and healthy subjects. We observed a dysregulation of mitochondrial and proteasomal pathways. We also generated transcriptomic profiles of primary microglia from brains of 55 subjects and observed discordant transcriptomic signatures of mitochondrial genes in PD monocytes and microglia. We further identified 17 PD susceptibility genes whose expression, relative to each risk allele, is altered in monocytes. These findings reveal widespread transcriptomic alterations in PD monocytes, with some being distinct from microglia, and facilitate efforts to understand the roles of myeloid cells in PD as well as the development of biomarkers.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Monocitos/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Encéfalo/metabolismo
12.
BMC Res Notes ; 8: 206, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26032494

RESUMEN

BACKGROUND: Bioinformaticians face a range of difficulties to get locally-installed tools running and producing results; they would greatly benefit from a system that could centralize most of the tools, using an easy interface for input and output. Web services, due to their universal nature and widely known interface, constitute a very good option to achieve this goal. RESULTS: Bioinformatics open web services (BOWS) is a system based on generic web services produced to allow programmatic access to applications running on high-performance computing (HPC) clusters. BOWS intermediates the access to registered tools by providing front-end and back-end web services. Programmers can install applications in HPC clusters in any programming language and use the back-end service to check for new jobs and their parameters, and then to send the results to BOWS. Programs running in simple computers consume the BOWS front-end service to submit new processes and read results. BOWS compiles Java clients, which encapsulate the front-end web service requisitions, and automatically creates a web page that disposes the registered applications and clients. CONCLUSIONS: Bioinformatics open web services registered applications can be accessed from virtually any programming language through web services, or using standard java clients. The back-end can run in HPC clusters, allowing bioinformaticians to remotely run high-processing demand applications directly from their machines.


Asunto(s)
Biología Computacional/métodos , Internet , Programas Informáticos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda