Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell Commun Signal ; 12: 41, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25027767

RESUMEN

BACKGROUND: Rapid activation of innate immune defences upon microbial infection depends on the evolutionary conserved NF-κB dependent signals which deregulation is frequently associated with chronic inflammation and oncogenesis. These signals are tightly regulated by the linkage of different kinds of ubiquitin moieties on proteins that modify either their activity or their stability. To investigate how ubiquitin specific proteases (USPs) orchestrate immune signal regulation, we created and screened a focused RNA interference library on Drosophila NF-κB-like pathways Toll and Imd in cultured S2 cells, and further analysed the function of selected genes in vivo. RESULTS: We report here that USP2 and USP34/Puf, in addition to the previously described USP36/Scny, prevent inappropriate activation of Imd-dependent immune signal in unchallenged conditions. Moreover, USP34 is also necessary to prevent constitutive activation of the Toll pathway. However, while USP2 also prevents excessive Imd-dependent signalling in vivo, USP34 shows differential requirement depending on NF-κB target genes, in response to fly infection by either Gram-positive or Gram-negative bacteria. We further show that USP2 prevents the constitutive activation of signalling by promoting Imd proteasomal degradation. Indeed, the homeostasis of the Imd scaffolding molecule is tightly regulated by the linkage of lysine 48-linked ubiquitin chains (K48) acting as a tag for its proteasomal degradation. This process is necessary to prevent constitutive activation of Imd pathway in vivo and is inhibited in response to infection. The control of Imd homeostasis by USP2 is associated with the hydrolysis of Imd linked K48-ubiquitin chains and the synergistic binding of USP2 and Imd to the proteasome, as evidenced by both mass-spectrometry analysis of USP2 partners and by co-immunoprecipitation experiments. CONCLUSION: Our work identified one known (USP36) and two new (USP2, USP34) ubiquitin specific proteases regulating Imd or Toll dependent immune signalling in Drosophila. It further highlights the ubiquitin dependent control of Imd homeostasis and shows a new activity for USP2 at the proteasome allowing for Imd degradation. This study provides original information for the better understanding of the strong implication of USP2 in pathological processes in humans, including cancerogenesis.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Animales Modificados Genéticamente , Línea Celular , Drosophila/inmunología , Drosophila/microbiología , Bacterias Gramnegativas , Bacterias Grampositivas , Transducción de Señal , Receptores Toll-Like/metabolismo , Ubiquitinación
2.
J Innate Immun ; 7(1): 37-46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25139117

RESUMEN

Transmembrane 9 (TM9) proteins, or nonaspanins, are a family of proteins conserved throughout evolution and characterized by 9 transmembrane domains. In Drosophila, TM9 superfamily protein member 4 (TM9SF4) and its closest paralogue, TM9SF2, contribute to phagocytosis of various types of particles, while TM9SF4 displays non-redundant requirement in Gram-negative bacteria engulfment. In addition, the two TM9 proteins control the actin cytoskeleton in larval haemocytes and in Drosophila S2 cells. Here, we show that TM9SF4 and TM9SF2 co-immunoprecipitate with the peptidoglycan recognition protein (PGRP)-LC, which triggers the Drosophila immune response to bacterial infection. Furthermore, both TM9 proteins co-localize with this receptor in intracellular vesicles and at the plasma membrane in Drosophila S2 cells in culture and in the fly fat body. Silencing TM9SF4 prevents plasma membrane localization of PGRP-LC, whereas silencing TM9SF2 does not, which may account for the non-redundant role of TM9SF4 in phagocytosis of Gram-negative bacteria. Finally, we provide a set of data suggesting that TM9 proteins can prevent inappropriate signalling from the unstimulated receptor.


Asunto(s)
Proteínas Portadoras/inmunología , Proteínas de Drosophila/inmunología , Bacterias Gramnegativas/inmunología , Proteínas de la Membrana/inmunología , Fagocitosis/inmunología , Transducción de Señal/inmunología , Animales , Proteínas Portadoras/genética , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de la Membrana/genética , Fagocitosis/genética , Transducción de Señal/genética
3.
Autophagy ; 8(5): 767-79, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22622177

RESUMEN

Initially described as a nonspecific degradation process induced upon starvation, autophagy is now known also to be involved in the degradation of specific ubiquitinated substrates such as mitochondria, bacteria and aggregated proteins, ensuring crucial functions in cell physiology and immunity. We report here that the deubiquitinating enzyme USP36 controls selective autophagy activation in Drosophila and in human cells. We show that dUsp36 loss of function autonomously inhibits cell growth while activating autophagy. Despite the phenotypic similarity, dUSP36 is not part of the TOR signaling pathway. Autophagy induced by dUsp36 loss of function depends on p62/SQSTM1, an adaptor for delivering cargo marked by polyubiquitin to autophagosomes. Consistent with p62 requirement, dUsp36 mutant cells display nuclear aggregates of ubiquitinated proteins, including Histone H2B, and cytoplasmic ubiquitinated proteins; the latter are eliminated by autophagy. Importantly, USP36 function in p62-dependent selective autophagy is conserved in human cells. Our work identifies a novel, crucial role for a deubiquitinating enzyme in selective autophagy.


Asunto(s)
Autofagia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/enzimología , Endopeptidasas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteínas Ubiquitinadas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Núcleo Celular/metabolismo , Proliferación Celular , Proteínas de Unión al ADN , Activación Enzimática , Cuerpo Adiposo/citología , Cuerpo Adiposo/metabolismo , Silenciador del Gen , Células HeLa , Humanos , Larva/citología , Larva/enzimología , Larva/crecimiento & desarrollo , Mutación/genética , Proteínas Nucleares/metabolismo , Proteína Sequestosoma-1 , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda