Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ecotoxicol Environ Saf ; 153: 188-194, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29433087

RESUMEN

In order to assess the effects of tannery effluents (TE) in organism health, juveniles of Prochilodus lineatus were submitted to in situ tests at four different river locations: site A - upstream of the tannery; site B - next to the tannery; and sites C and D - downstream of the tannery. After 96 h exposure in the river, samples of fish tissue, river water and sediment were collected in order to quantify chromium (Cr) concentrations. Tissue samples were used to assess the activity of ethoxyresorufin-O-deethylase (EROD) and glutathione S-transferase (GST), the content of glutathione (GSH) and metallothionein (MT) and the occurrence of lipid peroxidation (LPO) and DNA damage. Higher Cr concentrations were detected in the water and sediments from site B and in the liver of fish confined at site B, compared to the other sites. Fish caged at site B demonstrated higher levels of liver MT and hepatic EROD activity in relation to fish caged at the other sites. Moreover, fish from site B presented increased liver and branchial GST activities, as well as more GSH in the liver, than fish from site A. There were no significant variations in the occurrence of LPO and DNA damage among fish caged at the different sites. Thus, TE increased Cr levels in the water, sediments, and fish livers and stimulated the synthesis of MT and GSH and the activities of EROD and GST. In conclusion, TE affect the quality of the river and promote changes in biochemical biomarkers and Cr accumulation in P. lineatus.


Asunto(s)
Characiformes/metabolismo , Cromo/metabolismo , Monitoreo del Ambiente/métodos , Ríos/química , Curtiembre , Contaminantes Químicos del Agua/metabolismo , Animales , Biomarcadores/metabolismo , Biotransformación , Brasil , Characiformes/genética , Cromo/análisis , Daño del ADN , Hígado/efectos de los fármacos , Hígado/enzimología , Clima Tropical , Contaminantes Químicos del Agua/análisis
2.
Environ Pollut ; 305: 119245, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35381303

RESUMEN

The disruption of the Fundão dam released 43 million m3 of mine tailings into the Doce River until it flowed into the ocean through the estuary. The mine tailing changed the composition of metals in water and sediment, creating a challenging scenario for the local biota. We used multivariate analyzes and the integrated biomarker response index (IBR) to assess the impact of mine tailings on the bioaccumulation profile (As, Cd, Cr, Cu, Fe, Mn, Pb and Zn) as well as the biomarkers response in gills, hepatopancreas and muscle of shrimps sampled from different sectors during two dry seasons (dry1 and dry2) (Sep/Oct 2018; 2019) and two wet seasons (wet1 and wet2) (Jan/feb 2019; 2020). There was seasonal and local effect under bioaccumulation and biomarker response revealing that the pattern responses seen in each sector sampled changed according to the season. The greater IBR added to the strong association among the most metals tissue content (Cd, Cr, Cu and Mn) and sectors sampled during dry 1 suggests greater bioavailability of these metals to the environment in this period. Estuarine sectors stand out for high Fe bioavailability, especially during wet1, which seems to be associated with greater metallothionein content in hepatopancreas of shrimps. Native species of marine shrimps proved to be successful indicators of sediment quality besides being sensitive to water contamination by metals. The multi-biomarkers approach added to multivariate analysis supports the temporal and seasonal effects, signalizing the importance of continuous monitoring of the estuarine region to better know about the bioavailability of these metals, mainly Fe, and their long-term effects on the local biota.


Asunto(s)
Desastres , Metales Pesados , Contaminantes Químicos del Agua , Animales , Biomarcadores , Brasil , Cadmio , Monitoreo del Ambiente , Metales , Metales Pesados/análisis , Ríos , Agua , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 806(Pt 3): 150727, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34610403

RESUMEN

The rupture of the Fundão dam (Mariana, MG, southeast Brazil) released a huge flood of mine tailings to Doce river basin and its adjacent coastal area, in November 2015. This catastrophic event exposed aquatic communities to metal contamination related to mine tailings, but its biological effects are still poorly understood. This study investigates how biochemical response related to metal exposure vary between locations and seasons during the years of 2018-2020, in planktonic communities (micro and mesoplankton). Marine microplankton collected in sectors in front and south of the Doce river mouth presented the highest lipid peroxidation (LPO) and induction of metallothioneins (MT). Mesoplankton collected in sectors in front and north of the Doce river mouth presented highest LPO, while MT in this size class did not respond to a clear spatial pattern. Our results showed that metals affected biomarkers in a non-linear pattern and highlighted the complex relationship between metals, biochemical parameters, and seasonality. The variation in biochemical biomarkers indicates physiological stress related to metals, once sectors contaminated by metals, especially Fe, Mn and Cd, presented stronger biochemical responses. Comparison of metal levels with bioaccumulation data collected before the impact indicates Fe, Cd, Cr and Cu more than 2-fold higher after disaster in sectors closer to the river. Literature showed that these sectors present zooplanktonic assemblages with lower biomass and biodiversity, suggesting that the opportunistic species that thrives in the area are also under biochemical stress, but possibly relies on repair or defense mechanisms. The physiological stress detected by this study is possibly related to the mine tailings, considering the metals that stood out and the proximity with the Doce river mouth. This suggests that the impacts related to the failure of Fundão dam are still affecting the marine planktonic community even three to four years after the environmental disaster.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Bioacumulación , Brasil , Plancton , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda