Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(22): e2221483120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216508

RESUMEN

The enzymatic decarboxylation of fatty acids (FAs) represents an advance toward the development of biological routes to produce drop-in hydrocarbons. The current mechanism for the P450-catalyzed decarboxylation has been largely established from the bacterial cytochrome P450 OleTJE. Herein, we describe OleTPRN, a poly-unsaturated alkene-producing decarboxylase that outrivals the functional properties of the model enzyme and exploits a distinct molecular mechanism for substrate binding and chemoselectivity. In addition to the high conversion rates into alkenes from a broad range of saturated FAs without dependence on high salt concentrations, OleTPRN can also efficiently produce alkenes from unsaturated (oleic and linoleic) acids, the most abundant FAs found in nature. OleTPRN performs carbon-carbon cleavage by a catalytic itinerary that involves hydrogen-atom transfer by the heme-ferryl intermediate Compound I and features a hydrophobic cradle at the distal region of the substrate-binding pocket, not found in OleTJE, which is proposed to play a role in the productive binding of long-chain FAs and favors the rapid release of products from the metabolism of short-chain FAs. Moreover, it is shown that the dimeric configuration of OleTPRN is involved in the stabilization of the A-A' helical motif, a second-coordination sphere of the substrate, which contributes to the proper accommodation of the aliphatic tail in the distal and medial active-site pocket. These findings provide an alternative molecular mechanism for alkene production by P450 peroxygenases, creating new opportunities for biological production of renewable hydrocarbons.


Asunto(s)
Alquenos , Ácidos Grasos , Ácidos Grasos/metabolismo , Alquenos/química , Descarboxilación , Sistema Enzimático del Citocromo P-450/metabolismo , Oxidación-Reducción
2.
Nat Chem Biol ; 16(8): 920-929, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32451508

RESUMEN

The fundamental and assorted roles of ß-1,3-glucans in nature are underpinned on diverse chemistry and molecular structures, demanding sophisticated and intricate enzymatic systems for their processing. In this work, the selectivity and modes of action of a glycoside hydrolase family active on ß-1,3-glucans were systematically investigated combining sequence similarity network, phylogeny, X-ray crystallography, enzyme kinetics, mutagenesis and molecular dynamics. This family exhibits a minimalist and versatile (α/ß)-barrel scaffold, which can harbor distinguishing exo or endo modes of action, including an ancillary-binding site for the anchoring of triple-helical ß-1,3-glucans. The substrate binding occurs via a hydrophobic knuckle complementary to the canonical curved conformation of ß-1,3-glucans or through a substrate conformational change imposed by the active-site topology of some fungal enzymes. Together, these findings expand our understanding of the enzymatic arsenal of bacteria and fungi for the breakdown and modification of ß-1,3-glucans, which can be exploited for biotechnological applications.


Asunto(s)
Glucano 1,3-beta-Glucosidasa/química , Glicósido Hidrolasas/química , beta-Glucanos/química , Secuencia de Aminoácidos/genética , Sitios de Unión/fisiología , Dominio Catalítico/fisiología , Cristalografía por Rayos X/métodos , Glucano 1,3-beta-Glucosidasa/metabolismo , Glucanos/química , Glicósidos/química , Modelos Moleculares , Especificidad por Sustrato/fisiología
4.
Nat Commun ; 12(1): 4049, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193873

RESUMEN

Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.


Asunto(s)
Pared Celular/metabolismo , Citrus/microbiología , Glucanos/metabolismo , Glicósido Hidrolasas/metabolismo , Factores de Virulencia/genética , Xanthomonas/metabolismo , Xilanos/metabolismo , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Activación Transcripcional , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismo , Xanthomonas/genética , Xanthomonas/patogenicidad
5.
Artículo en Inglés | MEDLINE | ID: mdl-32435636

RESUMEN

Macaw palm is a highly oil-producing plant, which presents high contents of free fatty acids, being a promising feedstock for biofuel production. The current chemical routes are costly and complex, involving highly harsh industrial conditions. Enzymatic processing is a potential alternative; however, it is hampered by the scarce knowledge on biocatalysts adapted to this acidic feedstock. This work describes a novel lipase isolated from the thermophilic fungus Rasamsonia emersonii (ReLip), which tolerates extreme conditions such as the presence of methanol, high temperatures, and acidic medium. Among the tested feedstocks, the enzyme showed the highest preference for macaw palm oil, producing a hydrolyzate with a final free fatty acid content of 92%. Crystallographic studies revealed a closed conformation of the helical amphipathic lid that typically undergoes conformational changes in a mechanism of interfacial activation. Such conformation of the lid is stabilized by a salt bridge, not observed in other structurally characterized homologs, which is likely involved in the tolerance to organic solvents. Moreover, the lack of conservation of the aromatic cluster IxxWxxxxxF in the lid of ReLip with the natural mutation of the phenylalanine by an alanine might be correlated with the preference of short acyl chains, although preserving catalytic activity on insoluble substrates. In addition, the presence of five acidic amino acids in the lid of ReLip, a rare property reported in other lipases, may have contributed to its ability to tolerate and be effective in acidic environments. Therefore, our work describes a new fungal biocatalyst capable of efficiently hydrolyzing macaw oil, an attractive feedstock for the production of "drop-in" biofuels, with high desirable feature for industrial conditions such as thermal and methanol tolerance, and optimum acidic pH. Moreover, the crystallographic structure was elucidated, providing a structural basis for the enzyme substrate preference and tolerance to organic solvents.

6.
Protein Pept Lett ; 23(2): 99-106, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26548994

RESUMEN

Nucleoside diphosphate kinases (NDK; EC 2.7.4.6) are enzymes required for maintaining intracellular levels of nucleosides triphosphates (NTP) through transfer the γ-phosphoryl group from a NTP to a NDP. The enzyme is associated with several biological functions including prevention of host ATP-mediated cytolysis during pathogenic infections. Here we present the biophysical characterization of NDK from Leishmania major and the effect of a mutation on the protein structure in solution. The structural stability was analyzed since this secreted protein may act in different microenvironments at various stages of the parasite life cycle. LmNDK and P95S mutant were subjected to denaturation with pH and guanidine. Structural transitions were monitored by circular dichroism and intrinsic fluorescence tryptophan emission. Our results showed that the LmNDK is more structurally stable than other described NDKs and that the catalytically active P95S mutant in the Kpn loop presented a decrease in protein stability, indicating the importance of this proline for maintenance of the LmNDK structure.


Asunto(s)
Leishmania major/enzimología , Nucleósido-Difosfato Quinasa/química , Nucleósidos/química , Conformación Proteica , Adenosina Trifosfato/química , Biofisica , Leishmania major/química , Mutación/genética , Nucleósido-Difosfato Quinasa/genética , Nucleósidos/genética , Fosforilación , Prolina/química , Estabilidad Proteica
7.
Nat Commun, v. 12, 4049, jun. 2021
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-3884

RESUMEN

Xyloglucans are highly substituted and recalcitrant polysaccharides found in the primary cell walls of vascular plants, acting as a barrier against pathogens. Here, we reveal that the diverse and economically relevant Xanthomonas bacteria are endowed with a xyloglucan depolymerization machinery that is linked to pathogenesis. Using the citrus canker pathogen as a model organism, we show that this system encompasses distinctive glycoside hydrolases, a modular xyloglucan acetylesterase and specific membrane transporters, demonstrating that plant-associated bacteria employ distinct molecular strategies from commensal gut bacteria to cope with xyloglucans. Notably, the sugars released by this system elicit the expression of several key virulence factors, including the type III secretion system, a membrane-embedded apparatus to deliver effector proteins into the host cells. Together, these findings shed light on the molecular mechanisms underpinning the intricate enzymatic machinery of Xanthomonas to depolymerize xyloglucans and uncover a role for this system in signaling pathways driving pathogenesis.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda