Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Plant Cell Environ ; 46(1): 45-63, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36151613

RESUMEN

Light availability drives vertical canopy gradients in photosynthetic functioning and carbon (C) balance, yet patterns of variability in these gradients remain unclear. We measured light availability, photosynthetic CO2  and light response curves, foliar C, nitrogen (N) and pigment concentrations, and the photochemical reflectance index (PRI) on upper and lower canopy needles of white spruce trees (Picea glauca) at the species' northern and southern range extremes. We combined our photosynthetic data with previously published respiratory data to compare and contrast canopy C balance between latitudinal extremes. We found steep canopy gradients in irradiance, photosynthesis and leaf traits at the southern range limit, but a lack of variation across canopy positions at the northern range limit. Thus, unlike many tree species from tropical to mid-latitude forests, high latitude trees may not require vertical gradients of metabolic activity to optimize photosynthetic C gain. Consequently, accounting for self-shading is less critical for predicting gross primary productivity at northern relative to southern latitudes. Northern trees also had a significantly smaller net positive leaf C balance than southern trees suggesting that, regardless of canopy position, low photosynthetic rates coupled with high respiratory costs may ultimately constrain the northern range limit of this widely distributed boreal species.


Asunto(s)
Picea
2.
Plant Cell Environ ; 45(7): 2078-2092, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35419840

RESUMEN

White spruce (Picea glauca) spans a massive range, yet the variability in respiratory physiology and related implications for tree carbon balance at the extremes of this distribution remain as enigmas. Working at both the most northern and southern extents of the distribution range more than 5000 km apart, we measured the short-term temperature response of dark respiration (R/T) at upper and lower canopy positions. R/T curves were fit to both polynomial and thermodynamic models so that model parameters could be compared among locations, canopy positions, and with previously published data. Respiration measured at 25°C (R25 ) was 68% lower at the southern location than at the northern location, resulting in a significantly lower intercept in R/T response in temperate trees. Only at the southern location did upper canopy leaves have a steeper temperature response than lower canopy leaves, likely reflecting canopy gradients in light. At the northern range limit respiration is nearly twice that of the average R25 reported in a global leaf respiration database. We predict that without significant thermal acclimation, respiration will increase with projected end-of-the-century warming and will likely constrain the future range limits of this important boreal species.


Asunto(s)
Picea , Aclimatación/fisiología , Hojas de la Planta/fisiología , Respiración , Temperatura , Árboles/fisiología
3.
Glob Chang Biol ; 26(7): 4068-4078, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32279395

RESUMEN

Relationships between gross primary productivity (GPP) and the remotely sensed photochemical reflectance index (PRI) suggest that time series of foliar PRI may provide insight into climate change effects on carbon cycling. However, because a large fraction of carbon assimilated via GPP is quickly returned to the atmosphere via respiration, we ask a critical question-can PRI time series provide information about longer term gains in aboveground carbon stocks? Here we study the suitability of PRI time series to understand intra-annual stem-growth dynamics at one of the world's largest terrestrial carbon pools-the boreal forest. We hypothesized that PRI time series can be used to determine the onset (hypothesis 1) and cessation (hypothesis 2) of radial growth and enable tracking of intra-annual tree growth dynamics (hypothesis 3). Tree-level measurements were collected in 2018 and 2019 to link highly temporally resolved PRI observations unambiguously with information on daily radial tree growth collected via point dendrometers. We show that the seasonal onset of photosynthetic activity as determined by PRI time series was significantly earlier (p < .05) than the onset of radial tree growth determined from the point dendrometer time series which does not support our first hypothesis. In contrast, seasonal decline of photosynthetic activity and cessation of radial tree growth was not significantly different (p > .05) when derived from PRI and dendrometer time series, respectively, supporting our second hypothesis. Mixed-effects modeling results supported our third hypothesis by showing that the PRI was a statistically significant (p < .0001) predictor of intra-annual radial tree growth dynamics, and tracked these daily radial tree-growth dynamics in remarkable detail with conditional and marginal coefficients of determination of 0.48 and 0.96 (for 2018) and 0.43 and 0.98 (for 2019), respectively. Our findings suggest that PRI could provide novel insights into nuances of carbon cycling dynamics by alleviating important uncertainties associated with intra-annual vegetation response to climate change.


Asunto(s)
Tecnología de Sensores Remotos , Madera , Fotosíntesis , Estaciones del Año , Taiga
4.
Oecologia ; 192(3): 671-685, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32052180

RESUMEN

Warming-induced nutrient enrichment in the Arctic may lead to shifts in leaf-level physiological properties and processes with potential consequences for plant community dynamics and ecosystem function. To explore the physiological responses of Arctic tundra vegetation to increasing nutrient availability, we examined how a set of leaf nutrient and physiological characteristics of eight plant species (representing four plant functional groups) respond to a gradient of experimental nitrogen (N) and phosphorus (P) enrichment. Specifically, we examined a set of chlorophyll fluorescence measures related to photosynthetic efficiency, performance and stress, and two leaf nutrient traits (leaf %C and %N), across an experimental nutrient gradient at the Arctic Long Term Ecological Research site, located in the northern foothills of the Brooks Range, Alaska. In addition, we explicitly assessed the direct relationships between chlorophyll fluorescence and leaf %N. We found significant differences in physiological and nutrient traits between species and plant functional groups, and we found that species within one functional group (deciduous shrubs) have significantly greater leaf %N at high levels of nutrient addition. In addition, we found positive, saturating relationships between leaf %N and chlorophyll fluorescence measures across all species. Our results highlight species-specific differences in leaf nutrient traits and physiology in this ecosystem. In particular, the effects of a gradient of nutrient enrichment were most prominent in deciduous plant species, the plant functional group known to be increasing in relative abundance with warming in this ecosystem.


Asunto(s)
Ecosistema , Tundra , Alaska , Regiones Árticas , Nutrientes
5.
An Acad Bras Cienc ; 90(1): 295-309, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29641763

RESUMEN

Accurate forest inventory is of great economic importance to optimize the entire supply chain management in pulp and paper companies. The aim of this study was to estimate stand dominate and mean heights (HD and HM) and tree density (TD) of Pinus taeda plantations located in South Brazil using in-situ measurements, airborne Light Detection and Ranging (LiDAR) data and the non- k-nearest neighbor (k-NN) imputation. Forest inventory attributes and LiDAR derived metrics were calculated at 53 regular sample plots and we used imputation models to retrieve the forest attributes at plot and landscape-levels. The best LiDAR-derived metrics to predict HD, HM and TD were H99TH, HSD, SKE and HMIN. The Imputation model using the selected metrics was more effective for retrieving height than tree density. The model coefficients of determination (adj.R2) and a root mean squared difference (RMSD) for HD, HM and TD were 0.90, 0.94, 0.38m and 6.99, 5.70, 12.92%, respectively. Our results show that LiDAR and k-NN imputation can be used to predict stand heights with high accuracy in Pinus taeda. However, furthers studies need to be realized to improve the accuracy prediction of TD and to evaluate and compare the cost of acquisition and processing of LiDAR data against the conventional inventory procedures.


Asunto(s)
Modelos Estadísticos , Pinus taeda/crecimiento & desarrollo , Tecnología de Sensores Remotos/métodos , Árboles/crecimiento & desarrollo , Algoritmos , Brasil , Exactitud de los Datos , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/estadística & datos numéricos , Agricultura Forestal/métodos
6.
An Acad Bras Cienc ; 89(3): 1895-1905, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28813098

RESUMEN

Basal area (BA) is a good predictor of timber stand volume and forest growth. This study developed predictive models using field and airborne LiDAR (Light Detection and Ranging) data for estimation of basal area in Pinus taeda plantation in south Brazil. In the field, BA was collected from conventional forest inventory plots. Multiple linear regression models for predicting BA from LiDAR-derived metrics were developed and evaluated for predictive power and parsimony. The best model to predict BA from a family of six models was selected based on corrected Akaike Information Criterion (AICc) and assessed by the adjusted coefficient of determination (adj. R²) and root mean square error (RMSE). The best model revealed an adj. R²=0.93 and RMSE=7.74%. Leave one out cross-validation of the best regression model was also computed, and revealed an adj. R² and RMSE of 0.92 and 8.31%, respectively. This study showed that LiDAR-derived metrics can be used to predict BA in Pinus taeda plantations in south Brazil with high precision. We conclude that there is good potential to monitor growth in this type of plantations using airborne LiDAR. We hope that the promising results for BA modeling presented herein will stimulate to operate this technology in Brazil.


Asunto(s)
Bosques , Pinus taeda/crecimiento & desarrollo , Biomasa , Brasil , Modelos Teóricos , Tecnología de Sensores Remotos , Clima Tropical
7.
Oecologia ; 182(1): 85-97, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27193900

RESUMEN

As the Arctic warms, tundra vegetation is becoming taller and more structurally complex, as tall deciduous shrubs become increasingly dominant. Emerging studies reveal that shrubs exhibit photosynthetic resource partitioning, akin to forests, that may need accounting for in the "big leaf" net ecosystem exchange models. We conducted a lab experiment on sun and shade leaves from S. pulchra shrubs to determine the influence of both constitutive (slowly changing bulk carotenoid and chlorophyll pools) and facultative (rapidly changing xanthophyll cycle) pigment pools on a suite of spectral vegetation indices, to devise a rapid means of estimating within canopy resource partitioning. We found that: (1) the PRI of dark-adapted shade leaves (PRIo) was double that of sun leaves, and that PRIo was sensitive to variation among sun and shade leaves in both xanthophyll cycle pool size (V + A + Z) (r (2) = 0.59) and Chla/b (r (2) = 0.64); (2) A corrected PRI (difference between dark and illuminated leaves, ΔPRI) was more sensitive to variation among sun and shade leaves in changes to the epoxidation state of their xanthophyll cycle pigments (dEPS) (r (2) = 0.78, RMSE = 0.007) compared to the uncorrected PRI of illuminated leaves (PRI) (r (2) = 0.34, RMSE = 0.02); and (3) the SR680 index was correlated with each of (V + A + Z), lutein, bulk carotenoids, (V + A + Z)/(Chla + b), and Chla/b (r (2) range = 0.52-0.69). We suggest that ΔPRI be employed as a proxy for facultative pigment dynamics, and the SR680 for the estimation of constitutive pigment pools. We contribute the first Arctic-specific information on disentangling PRI-pigment relationships, and offer insight into how spectral indices can assess resource partitioning within shrub tundra canopies.


Asunto(s)
Clorofila/metabolismo , Tundra , Regiones Árticas , Fotosíntesis , Pigmentación , Hojas de la Planta/metabolismo
8.
New Phytol ; 201(1): 344-356, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24032717

RESUMEN

Terrestrial laser scanning (TLS) data allow spatially explicit (x, y, z) laser return intensities to be recorded throughout a plant canopy, which could considerably improve our understanding of how physiological processes vary in three-dimensional space. However, the utility of TLS data for the quantification of plant physiological properties remains largely unexplored. Here, we test whether the laser return intensity of green (532-nm) TLS correlates with changes in the de-epoxidation state of the xanthophyll cycle and photoprotective non-photochemical quenching (NPQ), and compare the ability of TLS to quantify these parameters with the passively measured photochemical reflectance index (PRI). We exposed leaves from five plant species to increasing light intensities to induce NPQ and de-epoxidation of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z). At each light intensity, the green laser return intensity (GLRI), narrowband spectral reflectance, chlorophyll fluorescence emission and xanthophyll cycle pigment composition were recorded. Strong relationships between both predictor variables (GLRI, PRI) and both explanatory variables (NPQ, xanthophyll cycle de-epoxidation) were observed. GLRI holds promise to provide detailed (mm) information about plant physiological status to improve our understanding of the patterns and mechanisms driving foliar photoprotection. We discuss the potential for scaling these laboratory data to three-dimensional canopy space.


Asunto(s)
Clorofila/metabolismo , Luz , Fotosíntesis , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Plantas , Rayos Láser , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Hojas de la Planta/metabolismo , Xantófilas/metabolismo
9.
Plant Methods ; 20(1): 102, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982502

RESUMEN

BACKGROUND: Understanding how trees develop their root systems is crucial for the comprehension of how wildland and urban forest ecosystems plastically respond to disturbances such as harvest, fire, and climate change. The interplay between the endogenously determined root traits and the response to environmental stimuli results in tree adaptations to biotic and abiotic factors, influencing stability, carbon allocation, and nutrient uptake. Combining the three-dimensional structure of the root system, with root morphological trait information promotes a robust understanding of root function and adaptation plasticity. Low Magnetic Field Digitization coupled with AMAPmod (botAnique et Modelisation de l'Architecture des Plantes) software has been the best-performing method for describing root system architecture and providing reliable measurements of coarse root traits, but the pace and scale of data collection remain difficult. Instrumentation and applications related to Terrestrial Laser Scanning (TLS) have advanced appreciably, and when coupled with Quantitative Structure Models (QSM), have shown some potential toward robust measurements of tree root systems. Here we compare, we believe for the first time, these two methodologies by analyzing the root system of 32-year-old Pinus ponderosa trees. RESULTS: In general, at the total root system level and by root-order class, both methods yielded comparable values for the root traits volume, length, and number. QSM for each root trait was highly sensitive to the root size (i.e., input parameter PatchDiam) and models were optimized when discrete PatchDiam ranges were specified for each trait. When examining roots in the four cardinal direction sectors, we observed differences between methodologies for length and number depending on root order but not volume. CONCLUSIONS: We believe that TLS and QSM could facilitate rapid data collection, perhaps in situ, while providing quantitative accuracy, especially at the total root system level. If more detailed measures of root system architecture are desired, a TLS method would benefit from additional scans at differing perspectives, avoiding gravitational displacement to the extent possible, while subsampling roots by hand to calibrate and validate QSM models. Despite some unresolved logistical challenges, our results suggest that future use of TLS may hold promise for quantifying tree root system architecture in a rapid, replicable manner.

10.
Ecol Appl ; 22(4): 1098-113, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22827121

RESUMEN

Bats face unprecedented threats from habitat loss, climate change, disease, and wind power development, and populations of many species are in decline. A better ability to quantify bat population status and trend is urgently needed in order to develop effective conservation strategies. We used a Bayesian autoregressive approach to develop dynamic distribution models for Myotis lucifugus, the little brown bat, across a large portion of northwestern USA, using a four-year detection history matrix obtained from a regional monitoring program. This widespread and abundant species has experienced precipitous local population declines in northeastern USA resulting from the novel disease white-nose syndrome, and is facing likely range-wide declines. Our models were temporally dynamic and accounted for imperfect detection. Drawing on species-energy theory, we included measures of net primary productivity (NPP) and forest cover in models, predicting that M. lucifugus occurrence probabilities would covary positively along those gradients. Despite its common status, M. lucifugus was only detected during -50% of the surveys in occupied sample units. The overall naive estimate for the proportion of the study region occupied by the species was 0.69, but after accounting for imperfect detection, this increased to -0.90. Our models provide evidence of an association between NPP and forest cover and M. lucifugus distribution, with implications for the projected effects of accelerated climate change in the region, which include net aridification as snowpack and stream flows decline. Annual turnover, the probability that an occupied sample unit was a newly occupied one, was estimated to be low (-0.04-0.14), resulting in flat trend estimated with relatively high precision (SD = 0.04). We mapped the variation in predicted occurrence probabilities and corresponding prediction uncertainty along the productivity gradient. Our results provide a much needed baseline against which future anticipated declines in M. lucifugus occurrence can be measured. The dynamic distribution modeling approach has broad applicability to regional bat monitoring efforts now underway in several countries and we suggest ways to improve and expand our grid-based monitoring program to gain robust insights into bat population status and trend across large portions of North America.


Asunto(s)
Quirópteros/fisiología , Modelos Biológicos , Animales , Monitoreo del Ambiente , Oregon , Dinámica Poblacional , Washingtón
11.
Front Plant Sci ; 12: 746464, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790212

RESUMEN

Arctic Treeline is the transition from the boreal forest to the treeless tundra and may be determined by growing season temperatures. The physiological mechanisms involved in determining the relationship between the physical and biological environment and the location of treeline are not fully understood. In Northern Alaska, we studied the relationship between temperature and leaf respiration in 36 white spruce (Picea glauca) trees, sampling both the upper and lower canopy, to test two research hypotheses. The first hypothesis is that upper canopy leaves, which are more directly coupled to the atmosphere, will experience more challenging environmental conditions and thus have higher respiration rates to facilitate metabolic function. The second hypothesis is that saplings [stems that are 5-10cm DBH (diameter at breast height)] will have higher respiration rates than trees (stems ≥10cm DBH) since saplings represent the transition from seedlings growing in the more favorable aerodynamic boundary layer, to trees which are fully coupled to the atmosphere but of sufficient size to persist. Respiration did not change with canopy position, however respiration at 25°C was 42% higher in saplings compared to trees (3.43±0.19 vs. 2.41±0.14µmolm-2 s-1). Furthermore, there were significant differences in the temperature response of respiration, and seedlings reached their maximum respiration rates at 59°C, more than two degrees higher than trees. Our results demonstrate that the respiratory characteristics of white spruce saplings at treeline impose a significant carbon cost that may contribute to their lack of perseverance beyond treeline. In the absence of thermal acclimation, the rate of leaf respiration could increase by 57% by the end of the century, posing further challenges to the ecology of this massive ecotone.

12.
Sensors (Basel) ; 10(4): 2843-50, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22319275

RESUMEN

Active ground optical remote sensing (AGORS) devices mounted on overhead irrigation booms could help to improve seedling quality by autonomously monitoring seedling stress. In contrast to traditionally used passive optical sensors, AGORS devices operate independently of ambient light conditions and do not require spectral reference readings. Besides measuring red (590-670 nm) and near-infrared (>760 nm) reflectance AGORS devices have recently become available that also measure red-edge (730 nm) reflectance. We tested the hypothesis that the additional availability of red-edge reflectance information would improve AGORS of plant stress induced chlorophyll breakdown in Scots pine (Pinus sylvestris). Our results showed that the availability of red-edge reflectance information improved AGORS estimates of stress induced variation in chlorophyll concentration (r2>0.73, RMSE<1.69) when compared to those without (r2=0.57, RMSE=2.11).


Asunto(s)
Técnicas Biosensibles/métodos , Pinus sylvestris/fisiología , Plantones/fisiología , Estrés Fisiológico , Clorofila/análisis , Clorofila A , Modelos Lineales , Reproducibilidad de los Resultados
13.
Mov Ecol ; 8: 39, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072330

RESUMEN

BACKGROUND: Temperatures in arctic-boreal regions are increasing rapidly and pose significant challenges to moose (Alces alces), a heat-sensitive large-bodied mammal. Moose act as ecosystem engineers, by regulating forest carbon and structure, below ground nitrogen cycling processes, and predator-prey dynamics. Previous studies showed that during hotter periods, moose displayed stronger selection for wetland habitats, taller and denser forest canopies, and minimized exposure to solar radiation. However, previous studies regarding moose behavioral thermoregulation occurred in Europe or southern moose range in North America. Understanding whether ambient temperature elicits a behavioral response in high-northern latitude moose populations in North America may be increasingly important as these arctic-boreal systems have been warming at a rate two to three times the global mean. METHODS: We assessed how Alaska moose habitat selection changed as a function of ambient temperature using a step-selection function approach to identify habitat features important for behavioral thermoregulation in summer (June-August). We used Global Positioning System telemetry locations from four populations of Alaska moose (n = 169) from 2008 to 2016. We assessed model fit using the quasi-likelihood under independence criterion and conduction a leave-one-out cross validation. RESULTS: Both male and female moose in all populations increasingly, and nonlinearly, selected for denser canopy cover as ambient temperature increased during summer, where initial increases in the conditional probability of selection were initially sharper then leveled out as canopy density increased above ~ 50%. However, the magnitude of selection response varied by population and sex. In two of the three populations containing both sexes, females demonstrated a stronger selection response for denser canopy at higher temperatures than males. We also observed a stronger selection response in the most southerly and northerly populations compared to populations in the west and central Alaska. CONCLUSIONS: The impacts of climate change in arctic-boreal regions increase landscape heterogeneity through processes such as increased wildfire intensity and annual area burned, which may significantly alter the thermal environment available to an animal. Understanding habitat selection related to behavioral thermoregulation is a first step toward identifying areas capable of providing thermal relief for moose and other species impacted by climate change in arctic-boreal regions.

14.
Science ; 370(6517): 712-715, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33154141

RESUMEN

The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature.


Asunto(s)
Migración Animal , Seguimiento de Parámetros Ecológicos , Aclimatación , Animales , Archivos , Regiones Árticas , Población
16.
PLoS One ; 13(10): e0205964, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30335845

RESUMEN

Protected areas (PAs) are a prominent approach to maintaining and enhancing biodiversity and ecosystem services. A critical question for safeguarding these resources is how PA governance processes and management structures influence their effectiveness. We conduct an impact evaluation of 12 PAs in three Central American countries to assess how processes in management restrictions, management capacity, and decentralization affect the annual change in the satellite-derived Normalized Difference Vegetation Index (NDVI). NDVI varies with greenness that relates to plant production, biomass, and important ecosystem functions related to biodiversity and ecosystem services such as water quality and carbon storage. Any loss of vegetation cover in the form of deforestation or degradation would show up as a decrease in NDVI values over time and gains in vegetation cover and regeneration as an increase in NDVI values. Management restriction categories are based on international classifications of strict versus multiple-use PAs, and capacity and decentralization categories are based on key informant interviews of PA managers. We use matching to create a counterfactual of non-protected observations and a matching estimator and regression to estimate treatment effects of each sub-sample. On average, strict and multiple-use PAs have a significant and positive effect on NDVI compared to non-protected land uses. Both high and low decentralized PAs also positively affect NDVI. High capacity PAs have a positive and significant effect on NDVI, while low capacity PAs have a negative effect on NDVI. Our findings advance knowledge on how governance and management influence PA effectiveness and suggest that capacity may be more important than governance type or management restrictions in maintaining and enhancing NDVI. This paper also provides a guide for future studies to incorporate measures of PA governance and management into impact evaluations.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , América Central , Intervalos de Confianza , Geografía , Plantas
17.
Carbon Balance Manag ; 12(1): 13, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28593558

RESUMEN

BACKGROUND: LiDAR remote sensing is a rapidly evolving technology for quantifying a variety of forest attributes, including aboveground carbon (AGC). Pulse density influences the acquisition cost of LiDAR, and grid cell size influences AGC prediction using plot-based methods; however, little work has evaluated the effects of LiDAR pulse density and cell size for predicting and mapping AGC in fast-growing Eucalyptus forest plantations. The aim of this study was to evaluate the effect of LiDAR pulse density and grid cell size on AGC prediction accuracy at plot and stand-levels using airborne LiDAR and field data. We used the Random Forest (RF) machine learning algorithm to model AGC using LiDAR-derived metrics from LiDAR collections of 5 and 10 pulses m-2 (RF5 and RF10) and grid cell sizes of 5, 10, 15 and 20 m. RESULTS: The results show that LiDAR pulse density of 5 pulses m-2 provides metrics with similar prediction accuracy for AGC as when using a dataset with 10 pulses m-2 in these fast-growing plantations. Relative root mean square errors (RMSEs) for the RF5 and RF10 were 6.14 and 6.01%, respectively. Equivalence tests showed that the predicted AGC from the training and validation models were equivalent to the observed AGC measurements. The grid cell sizes for mapping ranging from 5 to 20 also did not significantly affect the prediction accuracy of AGC at stand level in this system. CONCLUSION: LiDAR measurements can be used to predict and map AGC across variable-age Eucalyptus plantations with adequate levels of precision and accuracy using 5 pulses m-2 and a grid cell size of 5 m. The promising results for AGC modeling in this study will allow for greater confidence in comparing AGC estimates with varying LiDAR sampling densities for Eucalyptus plantations and assist in decision making towards more cost effective and efficient forest inventory.

18.
Ecol Evol ; 7(7): 2449-2460, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28405308

RESUMEN

Rapid environmental change at high latitudes is predicted to greatly alter the diversity, structure, and function of plant communities, resulting in changes in the pools and fluxes of nutrients. In Arctic tundra, increased nitrogen (N) and phosphorus (P) availability accompanying warming is known to impact plant diversity and ecosystem function; however, to date, most studies examining Arctic nutrient enrichment focus on the impact of relatively large (>25x estimated naturally occurring N enrichment) doses of nutrients on plant community composition and net primary productivity. To understand the impacts of Arctic nutrient enrichment, we examined plant community composition and the capacity for ecosystem function (net ecosystem exchange, ecosystem respiration, and gross primary production) across a gradient of experimental N and P addition expected to more closely approximate warming-induced fertilization. In addition, we compared our measured ecosystem CO 2 flux data to a widely used Arctic ecosystem exchange model to investigate the ability to predict the capacity for CO 2 exchange with nutrient addition. We observed declines in abundance-weighted plant diversity at low levels of nutrient enrichment, but species richness and the capacity for ecosystem carbon uptake did not change until the highest level of fertilization. When we compared our measured data to the model, we found that the model explained roughly 30%-50% of the variance in the observed data, depending on the flux variable, and the relationship weakened at high levels of enrichment. Our results suggest that while a relatively small amount of nutrient enrichment impacts plant diversity, only relatively large levels of fertilization-over an order of magnitude or more than warming-induced rates-significantly alter the capacity for tundra CO 2 exchange. Overall, our findings highlight the value of measuring and modeling the impacts of a nutrient enrichment gradient, as warming-related nutrient availability may impact ecosystems differently than single-level fertilization experiments.

19.
Ecol Evol ; 6(13): 4359-71, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27386081

RESUMEN

Ecosystem service-based management requires an accurate understanding of how human modification influences ecosystem processes and these relationships are most accurate when based on functional traits. Although trait variation is typically sampled at local scales, remote sensing methods can facilitate scaling up trait variation to regional scales needed for ecosystem service management. We review concepts and methods for scaling up plant and animal functional traits from local to regional spatial scales with the goal of assessing impacts of human modification on ecosystem processes and services. We focus our objectives on considerations and approaches for (1) conducting local plot-level sampling of trait variation and (2) scaling up trait variation to regional spatial scales using remotely sensed data. We show that sampling methods for scaling up traits need to account for the modification of trait variation due to land cover change and species introductions. Sampling intraspecific variation, stratification by land cover type or landscape context, or inference of traits from published sources may be necessary depending on the traits of interest. Passive and active remote sensing are useful for mapping plant phenological, chemical, and structural traits. Combining these methods can significantly improve their capacity for mapping plant trait variation. These methods can also be used to map landscape and vegetation structure in order to infer animal trait variation. Due to high context dependency, relationships between trait variation and remotely sensed data are not directly transferable across regions. We end our review with a brief synthesis of issues to consider and outlook for the development of these approaches. Research that relates typical functional trait metrics, such as the community-weighted mean, with remote sensing data and that relates variation in traits that cannot be remotely sensed to other proxies is needed. Our review narrows the gap between functional trait and remote sensing methods for ecosystem service management.

20.
Ecol Evol ; 5(22): 5383-5393, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30151140

RESUMEN

Red-naped sapsuckers (Sphyrapicus nuchalis) are functionally important because they create sapwells and cavities that other species use for food and nesting. Red-naped sapsucker ecology within aspen (Populus tremuloides) has been well studied, but relatively little is known about red-naped sapsuckers in conifer forests. We used light detection and ranging (LiDAR) data to examine occupancy patterns of red-naped sapsuckers in a conifer-dominated system. We surveyed for sapsuckers at 162 sites in northern Idaho, USA, during 2009 and 2010. We used occupancy models and an information-theoretic approach to model sapsucker occupancy as a function of four LiDAR-based metrics that characterized vegetation structure and tree harvest, and one non-LiDAR metric that characterized distance to major roads. We evaluated model support across a range of territory sizes using Akaike's information criterion. Top model support was highest at the 4-ha extent, which suggested that 4 ha was the most relevant scale describing sapsucker occupancy. Sapsuckers were positively associated with variation of canopy height and harvested area, and negatively associated with shrub and large tree density. These results suggest that harvest regimes and structural diversity of vegetation at moderate extents (e.g., 4 ha) largely influence occurrence of red-naped sapsuckers in conifer forests. Given the current and projected declines of aspen populations, it will be increasingly important to assess habitat relationships, as well as demographic characteristics, of aspen-associated species such as red-naped sapsuckers within conifer-dominated systems to meet future management and conservation goals.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda