Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Arch Environ Contam Toxicol ; 86(4): 346-362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743081

RESUMEN

It is postulated that below a transcriptomic-based point of departure, adverse effects are unlikely to occur, thereby providing a chemical concentration to use in screening level hazard assessment. The present study extends previous work describing a high-throughput fathead minnow assay that can provide full transcriptomic data after exposure to a test chemical. One-day post-hatch fathead minnows were exposed to ten concentrations of three representatives of four chemical modes of action: organophosphates, ecdysone receptor agonists, plant photosystem II inhibitors, and estrogen receptor agonists for 24 h. Concentration response modeling was performed on whole body gene expression data from each exposure, using measured chemical concentrations when available. Transcriptomic points of departure in larval fathead minnow were lower than apical effect concentrations across fish species but not always lower than toxic effect concentrations in other aquatic taxa like crustaceans and insects. The point of departure was highly dependent on measured chemical concentration which were often lower than the nominal concentration. Differentially expressed genes between chemicals within modes of action were compared and often showed statistically significant overlap. In addition, reproducibility between identical exposures using a positive control chemical (CuSO4) and variability associated with the transcriptomic point of departure using in silico sampling were considered. Results extend a transcriptomic-compatible fathead minnow high-throughput assay for possible use in ecological hazard screening.


Asunto(s)
Cyprinidae , Larva , Transcriptoma , Contaminantes Químicos del Agua , Animales , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Larva/efectos de los fármacos
2.
Environ Sci Technol ; 57(9): 3794-3803, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36800546

RESUMEN

Given concerns about potential toxicological hazards of the thousands of data-poor per- and polyfluorinated alkyl substances (PFAS) currently in commerce and detected in the environment, tiered testing strategies that employ high-throughput in vitro screening as an initial testing tier have been implemented. The present study evaluated the effectiveness of previous in vitro screening for identifying PFAS capable, or incapable, of inducing estrogenic responses in fish exposed in vivo. Fathead minnows (Pimephales promelas) were exposed for 96 h to five PFAS (perfluorooctanoic acid [PFOA]; 1H,1H,8H,8H-perfluorooctane-1,8-diol [FC8-diol]; 1H,1H,10H,10H-perfluorodecane-1,10-diol [FC10-diol]; 1H,1H,8H,8H-perfluoro-3,6-dioxaoctane-1,8-diol [FC8-DOD]; and perfluoro-2-methyl-3-oxahexanoic acid [HFPO-DA]) that showed varying levels of in vitro estrogenic potency. In agreement with in vitro screening results, exposure to FC8-diol, FC10-diol, and FC8-DOD caused concentration-dependent increases in the expression of transcript coding for vitellogenin and estrogen receptor alpha and reduced expression of insulin-like growth factor and apolipoprotein eb. Once differences in bioconcentration were accounted for, the rank order of potency in vivo matched that determined in vitro. These results provide a screening level benchmark for worst-case estimates of potential estrogenic hazards of PFAS and a basis for identifying structurally similar PFAS to scrutinize for putative estrogenic activity.


Asunto(s)
Ácidos Alcanesulfónicos , Cyprinidae , Fluorocarburos , Animales , Estrógenos/metabolismo , Estrona/metabolismo , Ácidos Alcanesulfónicos/metabolismo
3.
Environ Sci Technol ; 56(2): 1028-1040, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34967600

RESUMEN

Process wastewaters from food, beverage, and feedstock facilities, although regulated, are an under-investigated environmental contaminant source. Food process wastewaters (FPWWs) from 23 facilities in 17 U.S. states were sampled and documented for a plethora of chemical and microbial contaminants. Of the 576 analyzed organics, 184 (32%) were detected at least once, with concentrations as large as 143 µg L-1 (6:2 fluorotelomer sulfonic acid), and as many as 47 were detected in a single FPWW sample. Cumulative per/polyfluoroalkyl substance concentrations up to 185 µg L-1 and large pesticide transformation product concentrations (e.g., methomyl oxime, 40 µg L-1; clothianidin TMG, 2.02 µg L-1) were observed. Despite 48% of FPWW undergoing disinfection treatment prior to discharge, bacteria resistant to third-generation antibiotics were found in each facility type, and multiple bacterial groups were detected in all samples, including total coliforms. The exposure-activity ratios and toxicity quotients exceeded 1.0 in 13 and 22% of samples, respectively, indicating potential biological effects and toxicity to vertebrates and invertebrates associated with the discharge of FPWW. Organic contaminant profiles of FPWW differed from previously reported contaminant profiles of municipal effluents and urban storm water, indicating that FPWW is another important source of chemical and microbial contaminant mixtures discharged into receiving surface waters.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Animales , Bebidas , Monitoreo del Ambiente , Ríos/química , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidad
4.
Environ Sci Technol ; 55(2): 974-984, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33373525

RESUMEN

Monitoring of the Colorado River near the Moab, Utah, wastewater treatment plant (WWTP) outflow has detected pharmaceuticals, hormones, and estrogen-receptor (ER)-, glucocorticoid receptor (GR)-, and peroxisome proliferator-activated receptor-gamma (PPARγ)-mediated biological activities. The aim of the present multi-year study was to assess effects of a WWTP replacement on bioactive chemical (BC) concentrations. Water samples were collected bimonthly, pre- and post-replacement, at 11 sites along the Colorado River upstream and downstream of the WWTP and analyzed for in vitro bioactivities (e.g., agonism of ER, GR, and PPARγ) and BC concentrations; fathead minnows were cage deployed pre- and post-replacement at sites with varying proximities to the WWTP. Before the WWTP replacement, in vitro ER (24 ng 17ß-estradiol equivalents/L)-, GR (60 ng dexamethasone equivalents/L)-, and PPARγ-mediated activities were detected at the WWTP outflow but diminished downstream. In March 2018, the WWTP effluent was acutely toxic to the fish, likely due to elevated ammonia concentrations. Following the WWTP replacement, ER, GR, and PPARγ bioactivities were reduced by approximately 60-79%, no toxicity was observed in caged fish, and there were marked decreases in concentrations of many BCs. Results suggest that replacement of the Moab WWTP achieved a significant reduction in BC concentrations to the Colorado River.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Animales , Colorado , Monitoreo del Ambiente , Utah , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Technol ; 54(10): 6213-6223, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32320227

RESUMEN

A set of adverse outcome pathways (AOPs) linking inhibition of thyroperoxidase and deiodinase to impaired swim bladder inflation in fish has recently been developed. These AOPs help to establish links between these thyroid hormone (TH) disrupting molecular events and adverse outcomes relevant to aquatic ecological risk assessment. Until now, very little data on the effects of TH disruption on inflation of the anterior chamber (AC) of the swim bladder were available. The present study used zebrafish exposure experiments with three model compounds with distinct thyroperoxidase and deiodinase inhibition potencies (methimazole, iopanoic acid, and propylthiouracil) to evaluate this linkage. Exposure to all three chemicals decreased whole body triiodothyronine (T3) concentrations, either through inhibition of thyroxine (T4) synthesis or through inhibition of Dio mediated conversion of T4 to T3. A quantitative relationship between reduced T3 and reduced AC inflation was established, a critical key event relationship linking impaired swim bladder inflation to TH disruption. Reduced inflation of the AC was directly linked to reductions in swimming distance compared to controls as well as to chemical-exposed fish whose ACs inflated. Together the data provide compelling support for AOPs linking TH disruption to impaired AC inflation in fish.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Embrión no Mamífero , Yoduro Peroxidasa , Tiroxina , Triyodotironina , Vejiga Urinaria
6.
Environ Sci Technol ; 54(14): 8491-8499, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32584560

RESUMEN

A growing number of environmental pollutants are known to adversely affect the thyroid hormone system, and major gaps have been identified in the tools available for the identification, and the hazard and risk assessment of these thyroid hormone disrupting chemicals. We provide an example of how the adverse outcome pathway (AOP) framework and associated data generation can address current testing challenges in the context of fish early life stage tests, and fish tests in general. We demonstrate how a suite of assays covering biological processes involved in the underlying toxicological pathways can be implemented in a tiered screening and testing approach for thyroid hormone disruption, using the levels of assessment of the OECD's Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals as a guide.


Asunto(s)
Rutas de Resultados Adversos , Disruptores Endocrinos , Contaminantes Ambientales , Animales , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Peces , Medición de Riesgo , Hormonas Tiroideas
7.
Environ Sci Technol ; 54(19): 12142-12153, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32901485

RESUMEN

Environmental pollution is a threat to humans and wildlife species. Of particular concern are endocrine disrupting chemicals (EDCs). An important target of EDCs is nuclear receptors (NRs) that control endocrine and metabolic responses through transcriptional regulation. Owing in part to structural differences of NRs, adverse effects of EDCs vary significantly among species. Here, we describe a multiplexed reporter assay (the Ecotox FACTORIAL) enabling parallel assessment of compounds' effects on estrogen, androgen, thyroid, and PPARγ receptors of representative mammals, birds, reptiles, amphibians, and fish. The Ecotox FACTORIAL is a single-well assay comprising a set of species-specific, one-hybrid GAL4-NR reporter constructs transiently transfected into test cells. To harmonize cross-species assessments, we used a combination of two approaches. First, we used the same type of test cells for all reporters; second, we implemented a parallel detection of reporter RNAs. The assay demonstrated excellent quality, reproducibility, and insignificant intra-assay variability. Importantly, the EC50 values for NR ligands were consistent with those reported for conventional assays. Using the assay allowed ranking the hazard potential of environmental pollutants (e.g., bisphenols, polycyclic aromatic hydrocarbons, and synthetic progestins) across species. Furthermore, the assay permitted detecting taxa-specific effects of surface water samples. Therefore, the Ecotox FACTORIAL enables harmonized assessment of the endocrine and metabolic disrupting activity of chemicals and surface water in humans as well as in wildlife species.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Animales , Bioensayo , Disruptores Endocrinos/toxicidad , Sistema Endocrino , Contaminantes Ambientales/farmacología , Humanos , Reproducibilidad de los Resultados
8.
Environ Sci Technol ; 53(2): 973-983, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30548063

RESUMEN

While chemical analysis of contaminant mixtures remains an essential component of environmental monitoring, bioactivity-based assessments using in vitro systems increasingly are used in the detection of biological effects. Historically, in vitro assessments focused on a few biological pathways, for example, aryl hydrocarbon receptor (AhR) or estrogen receptor (ER) activities. High-throughput screening (HTS) technologies have greatly increased the number of biological targets and processes that can be rapidly assessed. Here we screened extracts of surface waters from a nationwide survey of United States streams for bioactivities associated with 69 different end points using two multiplexed HTS assays. Bioactivity of extracts from 38 streams was evaluated and compared with concentrations of over 700 analytes to identify chemicals contributing to observed effects. Eleven primary biological end points were detected. Pregnane X receptor (PXR) and AhR-mediated activities were the most commonly detected. Measured chemicals did not completely account for AhR and PXR responses. Surface waters with AhR and PXR effects were associated with low intensity, developed land cover. Likewise, elevated bioactivities frequently associated with wastewater discharges included endocrine-related end points ER and glucocorticoid receptor. These results underscore the value of bioassay-based monitoring of environmental mixtures for detecting biological effects that could not be ascertained solely through chemical analyses.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Mezclas Complejas , Monitoreo del Ambiente , Encuestas y Cuestionarios , Estados Unidos
9.
Environ Sci Technol ; 53(15): 8611-8620, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31287672

RESUMEN

In a recent U.S. Geological Survey/U.S. Environmental Protection Agency study assessing more than 700 organic compounds in 38 streams, in vitro assays indicated generally low estrogen, androgen, and glucocorticoid receptor activities, with 13 surface waters with 17ß-estradiol-equivalent (E2Eq) activities greater than a 1-ng/L estimated effects-based trigger value for estrogenic effects in male fish. Among the 36 samples assayed for mutagenicity in the Salmonella bioassay (reported here), 25% had low mutagenic activity and 75% were not mutagenic. Endocrine and mutagenic activities of the water samples were well correlated with each other and with the total number and cumulative concentrations of detected chemical contaminants. To test the predictive utility of knowledge-base-leveraging approaches, site-specific predicted chemical-gene (pCGA) and predicted analogous pathway-linked (pPLA) association networks identified in the Comparative Toxicogenomics Database were compared with observed endocrine/mutagenic bioactivities. We evaluated pCGA/pPLA patterns among sites by cluster analysis and principal component analysis and grouped the pPLA into broad mode-of-action classes. Measured E2eq and mutagenic activities correlated well with predicted pathways. The pPLA analysis also revealed correlations with signaling, metabolic, and regulatory groups, suggesting that other effects pathways may be associated with chemical contaminants in these waters and indicating the need for broader bioassay coverage to assess potential adverse impacts.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Animales , Bioensayo , Monitoreo del Ambiente , Estrógenos , Masculino , Pruebas de Mutagenicidad , Mutágenos
10.
Environ Sci Technol ; 53(17): 10470-10478, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31386814

RESUMEN

Quantitative adverse outcome pathways (qAOPs) describe quantitative response-response relationships that can predict the probability or severity of an adverse outcome for a given magnitude of chemical interaction with a molecular initiating event. However, the taxonomic domain of applicability for these predictions is largely untested. The present study began defining this applicability for a previously described qAOP for aromatase inhibition leading to decreased fecundity developed using data from fathead minnow (Pimephales promelas). This qAOP includes quantitative response-response relationships describing plasma 17ß-estradiol (E2) as a function of plasma fadrozole, plasma vitellogenin (VTG) as a function of plasma E2, and fecundity as a function of plasma VTG. These quantitative response-response relationships simulated plasma E2, plasma VTG, and fecundity measured in female zebrafish (Danio rerio) exposed to fadrozole for 21 days but not these responses measured in female Japanese medaka (Oryzias latipes). However, Japanese medaka had different basal levels of plasma E2, plasma VTG, and fecundity. Normalizing basal levels of each measurement to equal those of female fathead minnow enabled the relationships to accurately simulate plasma E2, plasma VTG, and fecundity measured in female Japanese medaka. This suggests that these quantitative response-response relationships are conserved across these three fishes when considering relative change rather than absolute measurements. The present study represents an early step toward defining the appropriate taxonomic domain of applicability and extending the regulatory applications of this qAOP.


Asunto(s)
Aromatasa , Cyprinidae , Animales , Estradiol , Fadrozol , Femenino , Fertilidad , Oocitos , Vitelogeninas
11.
Environ Sci Technol ; 52(2): 821-830, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29224359

RESUMEN

Omics approaches can monitor responses and alterations of biological pathways at genome-scale, which are useful to predict potential adverse effects by environmental toxicants. However, high throughput application of transcriptomics in chemical assessment is limited due to the high cost and lack of "standardized" toxicogenomic methods. Here, a reduced zebrafish transcriptome (RZT) approach was developed to represent the whole transcriptome and to profile bioactivity of chemical and environmental mixtures in zebrafish embryo. RZT gene set of 1637 zebrafish Entrez genes was designed to cover a wide range of biological processes, and to faithfully capture gene-level and pathway-level changes by toxicants compared with the whole transcriptome. Concentration-response modeling was used to calculate the effect concentrations (ECs) of DEGs and corresponding molecular pathways. To validate the RZT approach, quantitative analysis of gene expression by RNA-ampliseq technology was used to identify differentially expressed genes (DEGs) at 32 hpf following exposure to seven serial dilutions of reference chemical BPA (10-10E-5µM) or each of four water samples ranging from wastewater to drinking water (relative enrichment factors 10-6.4 × 10-4). The RZT-ampliseq-embryo approach was both sensitive and able to identify a wide spectrum of biological activities associated with BPA exposure. Water quality was benchmarked based on the sensitivity distribution curve of biological pathways detected using RZT-ampliseq-embryo. Finally, the most sensitive biological pathways were identified, including those linked with adverse reproductive outcomes, genotoxicity and development outcomes. RZT-ampliseq-embryo approach provides an efficient and cost-effective tool to prioritize toxicants based on responsiveness of biological pathways.


Asunto(s)
Transcriptoma , Pez Cebra , Animales , Embrión no Mamífero , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN
12.
Environ Sci Technol ; 52(23): 13960-13971, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30351027

RESUMEN

High-throughput screening (HTS) and computational technologies have emerged as important tools for chemical hazard identification. The US Environmental Protection Agency (EPA) launched the Toxicity ForeCaster (ToxCast) Program, which has screened thousands of chemicals in hundreds of mammalian-based HTS assays for biological activity. The data are being used to prioritize toxicity testing on those chemicals likely to lead to adverse effects. To use HTS assays in predicting hazard to both humans and wildlife, it is necessary to understand how broadly these data may be extrapolated across species. The US EPA Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/ ) tool was used to assess conservation of the 484 protein targets represented in the suite of ToxCast assays and other HTS assays. To demonstrate the utility of the SeqAPASS data for guiding extrapolation, case studies were developed which focused on targets of interest to the US Endocrine Disruptor Screening Program and the Organisation for Economic Cooperation and Development. These case studies provide a line of evidence for conservation of endocrine targets across vertebrate species, with few exceptions, and demonstrate the utility of SeqAPASS for defining the taxonomic domain of applicability for HTS results and identifying organisms for suitable follow-up toxicity tests.


Asunto(s)
Disruptores Endocrinos , Ensayos Analíticos de Alto Rendimiento , Animales , Humanos , Alineación de Secuencia , Pruebas de Toxicidad , Estados Unidos , United States Environmental Protection Agency
13.
Gen Comp Endocrinol ; 266: 87-100, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29733815

RESUMEN

The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis. Control organisms were sampled at several time points during embryonic and larval development until 33 days post-fertilization. Total RNA was extracted from pooled, whole fish, and thyroid-related mRNA expression was evaluated using quantitative polymerase chain reaction. Gene transcripts examined included: thyrotropin-releasing hormone receptor (trhr), thyroid-stimulating hormone receptor (tshr), sodium-iodide symporter (nis), thyroid peroxidase (tpo), thyroglobulin (tg), transthyretin (ttr), deiodinases 1, 2, 3a, and 3b (dio1, dio2, dio3a and 3b), and thyroid hormone receptors alpha and beta (thrα and ß). A loess regression method was successful in identifying maxima and minima of transcriptional expression during early development of both species. Overall, we observed great similarities between the species, including maternal transfer, at least to some extent, of almost all transcripts (confirmed in unfertilized eggs), increasing expression of most transcripts during hatching and embryo-larval transition, and indications of a fully functional HPT axis in larvae. These data will aid in the development of hypotheses on the role of certain genes and pathways during development. Furthermore, this provides a background reference dataset for designing and interpreting targeted transcriptional expression studies both for fundamental research and for applications such as toxicology.


Asunto(s)
Cyprinidae/embriología , Cyprinidae/genética , Sistema Hipotálamo-Hipofisario/metabolismo , Glándula Tiroides/metabolismo , Transcripción Genética , Pez Cebra/embriología , Pez Cebra/genética , Animales , Desarrollo Embrionario , Proteínas de Peces/metabolismo , Larva/metabolismo , Análisis de Componente Principal , Especificidad de la Especie
14.
Environ Sci Technol ; 51(8): 4142-4157, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28355071

RESUMEN

Molting is critical for growth, development, reproduction, and survival in arthropods. Complex neuroendocrine pathways are involved in the regulation of molting and may potentially become targets of environmental endocrine disrupting chemicals (EDCs). Based on several known ED mechanisms, a wide range of pesticides has been developed to combat unwanted organisms in food production activities such as agriculture and aquaculture. Meanwhile, these chemicals may also pose hazards to nontarget species by causing molting defects, and thus potentially affecting the health of the ecosystems. The present review summarizes the available knowledge on molting-related endocrine regulation and chemically mediated disruption in arthropods (with special focus on insects and crustaceans), to identify research gaps and develop a mechanistic model for assessing environmental hazards of these compounds. Based on the review, multiple targets of EDCs in the molting processes were identified and the link between mode of action (MoA) and adverse effects characterized to inform future studies. An adverse outcome pathway (AOP) describing ecdysone receptor agonism leading to incomplete ecdysis associated mortality was developed according to the OECD guideline and subjected to weight of evidence considerations by evolved Bradford Hill Criteria. This review proposes the first invertebrate ED AOP and may serve as a knowledge foundation for future environmental studies and AOP development.


Asunto(s)
Artrópodos , Disruptores Endocrinos/farmacología , Muda/efectos de los fármacos , Animales , Crustáceos , Disruptores Endocrinos/metabolismo , Reproducción/efectos de los fármacos
15.
Environ Sci Technol ; 51(8): 4661-4672, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28355063

RESUMEN

A quantitative adverse outcome pathway (qAOP) consists of one or more biologically based, computational models describing key event relationships linking a molecular initiating event (MIE) to an adverse outcome. A qAOP provides quantitative, dose-response, and time-course predictions that can support regulatory decision-making. Herein we describe several facets of qAOPs, including (a) motivation for development, (b) technical considerations, (c) evaluation of confidence, and (d) potential applications. The qAOP used as an illustrative example for these points describes the linkage between inhibition of cytochrome P450 19A aromatase (the MIE) and population-level decreases in the fathead minnow (FHM; Pimephales promelas). The qAOP consists of three linked computational models for the following: (a) the hypothalamic-pitutitary-gonadal axis in female FHMs, where aromatase inhibition decreases the conversion of testosterone to 17ß-estradiol (E2), thereby reducing E2-dependent vitellogenin (VTG; egg yolk protein precursor) synthesis, (b) VTG-dependent egg development and spawning (fecundity), and (c) fecundity-dependent population trajectory. While development of the example qAOP was based on experiments with FHMs exposed to the aromatase inhibitor fadrozole, we also show how a toxic equivalence (TEQ) calculation allows use of the qAOP to predict effects of another, untested aromatase inhibitor, iprodione. While qAOP development can be resource-intensive, the quantitative predictions obtained, and TEQ-based application to multiple chemicals, may be sufficient to justify the cost for some applications in regulatory decision-making.


Asunto(s)
Inhibidores de la Aromatasa/toxicidad , Fadrozol/toxicidad , Animales , Cyprinidae , Estradiol/metabolismo , Modelos Teóricos , Valor Predictivo de las Pruebas , Vitelogeninas/metabolismo
16.
Environ Sci Technol ; 51(8): 4705-4713, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28328210

RESUMEN

Studies worldwide have demonstrated the occurrence of feminized male fish at sites impacted by human and animal wastes. A variety of chemicals could contribute to this phenomenon, but those receiving the greatest attention in terms of research and monitoring have been 17ß-estradiol (ß-E2) and 17α-ethinylestradiol, due both to their prevalence in the environment and strong estrogenic potency. A third steroid, estrone (E1), also can occur at high concentrations in surface waters but generally has been of lesser concern due to its relatively lower affinity for vertebrate estrogen receptors. In an initial experiment, male fathead minnow (Pimephales promelas) adults were exposed for 4-d to environmentally relevant levels of waterborne E1, which resulted in plasma ß-E2 concentrations similar to those found in reproductively active females. In a second exposure we used 13C-labeled E1, together with liquid chromatography-tandem mass spectrometry, to demonstrate that elevated ß-E2 measured in the plasma of the male fish was indeed derived from the external environment, most likely via a conversion catalyzed by one or more 17ß-hydroxysteroid dehydrogenases. The results of our studies suggest that the potential impact of E1 as an environmental estrogen currently is underestimated.


Asunto(s)
Estrógenos , Estrona , Animales , Cyprinidae/sangre , Exposición a Riesgos Ambientales , Estradiol/sangre , Humanos , Masculino
17.
Environ Sci Technol ; 51(15): 8701-8712, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28651047

RESUMEN

We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two different wastewater treatment plant discharge sites in the Saint Louis Bay, Duluth, MN and one upstream reference site. The biological impact of 51 chemicals detected in the surface water of 133 targeted chemicals was determined using biochemical endpoints, exposure activity ratios for biological and estrogenic responses, known chemical:gene interactions from biological pathways and knowledge bases, and analysis of the covariance of ovary gene expression with surface water chemistry. Thirty-two chemicals were significantly linked by covariance with expressed genes. No estrogenic impact on biochemical endpoints was observed in male or female minnows. However, bisphenol A (BPA) was identified by chemical:gene covariation as the most impactful estrogenic chemical across all exposure sites. This was consistent with identification of estrogenic effects on gene expression, high BPA exposure activity ratios across all test sites, and historical analysis of the study area. Gene expression analysis also indicated the presence of nontargeted chemicals including chemotherapeutics consistent with a local hospital waste stream. Overall impacts on gene expression appeared to be related to changes in treatment plant function during rain events. This approach appears useful in examining the impacts of complex mixtures on fish and offers a potential route in linking chemical exposure to adverse outcomes that may reduce population sustainability.


Asunto(s)
Cyprinidae/genética , Aguas Residuales , Contaminantes Químicos del Agua/toxicidad , Animales , Monitoreo del Ambiente , Estrona , Femenino , Masculino , Pruebas de Mutagenicidad , Medición de Riesgo
18.
Environ Sci Technol ; 51(15): 8713-8724, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28671818

RESUMEN

Current environmental monitoring approaches focus primarily on chemical occurrence. However, based on concentration alone, it can be difficult to identify which compounds may be of toxicological concern and should be prioritized for further monitoring, in-depth testing, or management. This can be problematic because toxicological characterization is lacking for many emerging contaminants. New sources of high-throughput screening (HTS) data, such as the ToxCast database, which contains information for over 9000 compounds screened through up to 1100 bioassays, are now available. Integrated analysis of chemical occurrence data with HTS data offers new opportunities to prioritize chemicals, sites, or biological effects for further investigation based on concentrations detected in the environment linked to relative potencies in pathway-based bioassays. As a case study, chemical occurrence data from a 2012 study in the Great Lakes Basin along with the ToxCast effects database were used to calculate exposure-activity ratios (EARs) as a prioritization tool. Technical considerations of data processing and use of the ToxCast database are presented and discussed. EAR prioritization identified multiple sites, biological pathways, and chemicals that warrant further investigation. Prioritized bioactivities from the EAR analysis were linked to discrete adverse outcome pathways to identify potential adverse outcomes and biomarkers for use in subsequent monitoring efforts.


Asunto(s)
Bioensayo , Monitoreo del Ambiente , Ensayos Analíticos de Alto Rendimiento , Pruebas de Toxicidad , Biomarcadores , Great Lakes Region , Humanos , Lagos
19.
Environ Sci Technol ; 51(9): 4792-4802, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28401767

RESUMEN

Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites. Detected contaminant concentrations varied from less than 1 ng L-1 to greater than 10 µg L-1, with 77 and 278 having median detected concentrations greater than 100 ng L-1 and 10 ng L-1, respectively. Cumulative detections and concentrations ranged 4-161 compounds (median 70) and 8.5-102 847 ng L-1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71-82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001-0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at µg L-1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L-1.


Asunto(s)
Ríos/química , Contaminantes Químicos del Agua , Cloropirifos/toxicidad , Monitoreo del Ambiente , Plaguicidas , Aguas Residuales/química
20.
Gen Comp Endocrinol ; 252: 79-87, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28736226

RESUMEN

Cytochrome P450 aromatase catalyzes conversion of C19 androgens to C18 estrogens and is critical for normal reproduction in female vertebrates. Fadrozole is a model aromatase inhibitor that has been shown to suppress estrogen production in the ovaries of fish. However, little is known about the early impacts of aromatase inhibition on steroid production and gene expression in fish. Adult female fathead minnows (Pimephales promelas) were exposed via water to 0, 5, or 50µg fadrozole/L for a time-course of 0.5, 1, 2, 4, and 6h, or 0 or 50µg fadrozole/L for a time-course of 6, 12, and 24h. We examined ex vivo ovarian 17ß-estradiol (E2) and testosterone (T) production, and plasma E2 concentrations from each study. Expression profiles of genes known or hypothesized to be impacted by fadrozole including aromatase (cytochrome P450 [cyp] 19a1a), steriodogenic acute regulatory protein (star), cytochrome P450 side-chain cleavage (cyp11a), cytochrome P450 17 alpha hydroxylase/17,20 lyase (cyp17), and follicle stimulating hormone receptor (fshr) were measured in the ovaries by quantitative real-time polymerase chain reaction (QPCR). In addition, broader ovarian gene expression was examined using a 15k fathead minnow microarray. The 5µg/L exposure significantly reduced ex vivo E2 production by 6h. In the 50µg/L treatment, ex vivo E2 production was significantly reduced after just 2h of exposure and remained depressed at all time-points examined through 24h. Plasma E2 concentrations were significantly reduced as early as 4h after initiation of exposure to either 5 or 50µg fadrozole/L and remained depressed throughout 24h in the 50µg/L exposure. Ex vivo T concentrations remained unchanged throughout the time-course. Expression of transcripts involved in steroidogenesis increased within the first 24h suggesting rapid induction of a mechanism to compensate for fadrozole inhibition of aromatase. Microarray results also showed fadrozole exposure caused concentration- and time-dependent changes in gene expression profiles in many HPG-axis pathways as early as 4h. This study provides insights into the very rapid effects of aromatase inhibition on steroidogenic processes in fish.


Asunto(s)
Inhibidores de la Aromatasa/farmacología , Cyprinidae/genética , Fadrozol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ovario/metabolismo , Esteroides/biosíntesis , Animales , Cyprinidae/sangre , Cyprinidae/metabolismo , Estradiol/sangre , Femenino , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Testosterona/sangre , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda