Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Synchrotron Radiat ; 29(Pt 1): 30-36, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985420

RESUMEN

The size and shape of a water-soluble hexanuclear plutonium cluster were probed by combining synchrotron small-angle X-ray scattering (SAXS) and extended X-ray absorption fine structure (EXAFS). A specific setup coupling both techniques and dedicated to radioactive samples on the MARS beamline endstation at Synchrotron SOLEIL is described. The plutonium hexanuclear cores are well stabilized by the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid ligands and this allows a good evaluation of the setup to probe the very small plutonium core. The results show that, in spite of the constrained conditions required to avoid any risk of sample dispersion, the flux and the sample environment are optimized to obtain a very good signal-to-noise ratio, allowing the detection of small plutonium aggregates in an aqueous phase. The structure of the well defined hexanuclear cluster has been confirmed by EXAFS measurements in solution and correlated with SAXS data processing and modelling. An iterative comparison of classical fit models (Guinier or sphere form factor) with the experimental results allowed a better interpretation of the SAXS signal that will be relevant for future work under environmentally relevant conditions.


Asunto(s)
Plutonio , Sincrotrones , Dispersión del Ángulo Pequeño , Agua , Difracción de Rayos X
2.
Chemistry ; 25(41): 9580-9585, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31070817

RESUMEN

The preparation and structural characterization of an original Th peroxo sulfate dihydrate, crystallizing at room temperature in the form of stable 1D polymeric microfibres is described. A combination of laboratory and synchrotron techniques allowed solution of the structure of the Th(O2 )(SO4 )(H2 O)2 compound, which crystallizes in a new structure type in the space group Pna21 of the orthorhombic crystal system. Particularly, the peroxide ligand coordinates to the Th cations in an unusual µ3 -η2 :η2 :η2 bridging mode, forming an infinite 1D chain decorated with sulfato ligands exhibiting simultaneously monodentate and bidentate coordination modes.

3.
Chem Commun (Camb) ; 60(49): 6260-6263, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38722108

RESUMEN

Although hydrogen peroxide (H2O2) has been highly used in nuclear chemistry for more than 75 years, the preparation and literature description of tetravalent actinide peroxides remain surprisingly scarce. A new insight is given in this topic through the synthesis and thorough structural characterization of a new peroxo compound of Pu(IV).

4.
Dalton Trans ; 52(7): 2135-2144, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36722900

RESUMEN

Actinide colloids and nanoparticles (NPs) currently constitute a topic of strong interest due to their potential role in advanced nuclear energetics and the environmental migration of radioactivity. A better understanding of the physico-chemical properties of nanoscale actinide oxides requires robust synthesis approaches. In this work, UO2+x NPs were successfully prepared by sonochemistry from U(IV) solutions previously stabilised in a hydrochloric medium (20 kHz, 65 °C, Ar/(10%)CO). Colloidal suspensions were found to be composed of crystalline and spherical NPs showing a UO2-like structure and measuring 18.0 ± 0.1 nm (SAXS, HR-TEM and PXRD techniques). In comparison with the controlled hydrolysis approach used as a reference, sonochemistry appears to be a simple and original synthesis route providing larger, better defined and more crystalline UO2+x NPs with a narrower size distribution. These well-defined NPs offer new opportunities for the preparation of reference actinide materials devoted to fundamental, technological and environmental studies.

5.
J Hazard Mater ; 459: 132059, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37478590

RESUMEN

Pseudomorphic transformations are related to chemical conversions of materials while conserving their shape and structural features. Structuring ceramic shapes this way can be used to tailor the physico-chemical properties of materials that can benefit particular applications. In the context of spent nuclear fuel storage interacting with radiolysis products, the sonochemical behavior of powdered UO2 was investigated in dilute aqueous solutions saturated with Ar/(20 %)O2 (20 °C). Optimized parameter settings enabled the complete conversion of UO2 micrometric platelets into uranyl peroxide precipitates, referred to as (meta-)studtite [(UO2(O2)(H2O)2)xH2O] with x = 2 or 4. While the most acidic conditions yielded elongated crystal shapes in agreement with a dissolution/reprecipitation mechanism, softer conditions allowed the pseudomorphic transformation of the platelet shape oxide suggesting a complex formation mechanism. For specific conditions, this unprecedented morphology was accompanied with the formation of a hole in the platelet center. Investigations revealed that the formation of the drilled polymorphs is related to a perfect blend of H+, in-situ generation of H2O2 and high-frequency ultrasound, and is most probably related to the sono-capillary effect. These insights pave the way for new sonochemical approaches dedicated to the preparation of material polymorphs tailoring specific structural properties.

6.
J Phys Chem Lett ; 13(1): 42-48, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34958222

RESUMEN

Splitting of water molecules driven by ultrasound plays a central role in sonochemistry. While studies of sonoluminescence revealed the formation of a plasma inside the cavitation bubble, much less is known about the contribution of plasma chemical processes to the sonochemical mechanisms. Herein, we report for the first time sonochemical processes in water saturated with pure CO. The presence of CO causes a large increase in the H/D kinetic isotope effect (KIE) to αH = 14.6 ± 1.8 in a 10% H2O/D2O mixture under 20 kHz ultrasound. The anomalous H/D KIE is attributed to electron quantum tunneling in the plasma produced by cavitation. In addition, CO2 formed simultaneously with hydrogen during the sonochemical process is enriched with the 13C isotope, which indicates a V-V pumping mechanism typical for non-equilibrium plasma. Both observed KIEs unambiguously point to the contribution of quantum effects in sonochemical mechanisms.

7.
Nanoscale Adv ; 4(23): 4938-4971, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36504736

RESUMEN

Due to the increased attention given to actinide nanomaterials, the question of their structure-property relationship is on the spotlight of recent publications. Plutonium oxide (PuO2) particularly plays a central role in nuclear energetics and a comprehensive knowledge about its properties when nanosizing is of paramount interest to understand its behaviour in environmental migration schemes but also for the development of advanced nuclear energy systems underway. The element plutonium further stimulates the curiosity of scientists due to the unique physical and chemical properties it exhibits around the periodic table. PuO2 crystallizes in the fluorite structure of the face-centered cubic system for which the properties can be significantly affected when shrinking. Identifying the formation mechanism of PuO2 nanoparticles, their related atomic, electronic and crystalline structures, and their reactivity in addition to their nanoscale properties, appears to be a fascinating and challenging ongoing topic, whose recent advances are discussed in this review.

8.
Chem Commun (Camb) ; 58(94): 13147-13150, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36349890

RESUMEN

New insights are provided about the formation mechanism of PuO2 nanoparticles (NPs) by investigating an unprecedented kinetic isotope effect observed during their hydrolytic synthesis in H2O or D2O and attributed to OH/OD zero point energy difference. The signature of a Pu(IV) oxo-hydroxo hexanuclear cluster, appearing as an important intermediate during the formation of the 2 nm PuO2 NPs (synchrotron SAXS/XAS), is further revealed indicating that their formation is controlled by H-transfer reactions occurring during hydroxo to oxo-bridge conversions.

9.
J Hazard Mater ; 406: 124734, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33388547

RESUMEN

UNGG cladding nuclear wastes constitute a huge volume of Mg-based materials that raises economic and safety concerns, particularly due to their radioactivity coupled to the potential generation of H2 gas under deep underground disposal. Their significant decontamination would result in more secure and less expensive storage, with a better containment of the separated long-lived radioisotopes that could enter in a classical channel. Sonication of genuine UNGG cladding materials and simulants at 345 kHz in 0.01 M oxalic acid solution (20 °C) allowed the structuring of their surfaces with the observation of homogeneously distributed craters of 20-40 µm in diameter. After a thorough characterization and comparison of the ultrasound effects generated at the surface, the various samples were artificially contaminated and characterized before sonication. The complete and rapid sonochemical decontamination of Mg-based materials was then observed, in addition to the removal of the carbon layer promoting corrosion on the inner UNGG cladding. The extension of sonication allows the neo-formed brucite (Mg(OH)2) and zirconium-based phases to accumulate on the surface, thus contributing in a slight but continuous surface recontamination process. This phenomenon results from the re-adsorption of uranyl cations from the solution which can be avoided by optimizing the duration of treatment.

10.
Dalton Trans ; 50(33): 11498-11511, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34346448

RESUMEN

Under oxidizing conditions, the corrosion of spent nuclear fuel may lead to the leaching of radionuclides including soluble uranyl-based species. The speciation of the generated chemical forms is complex and the related potential formation of colloidal species appears surprisingly poorly reported in the literature. Their formation could however contribute significantly to the mobility of radionuclides in the environment. A better knowledge in the speciation and reactivity of these species appears particularly relevant. This study describes the preparation and characterization of intrinsic uranium(vi) colloids from amorphous and crystalline UO3 in pure water assisted by 20 kHz ultrasound. In the presence of carbon monoxide preventing the sonochemical formation of hydrogen peroxide, ultrasonic treatment boosts the conversion of UO3 powder into (meta-)schoepite precipitates and yields very stable and notably concentrated uranium(vi) nanoparticles in the liquid phase. Using HR-TEM, SAXS and XAS techniques, we confirmed that the colloidal suspension is composed of quasi-spherical nanoparticles measuring ca. 3.8 ± 0.3 nm and exhibiting a schoepite-like crystallographic structure. The proposed method demonstrates the possible formation of environmentally relevant U(vi) colloidal nanoparticles appearing particularly interesting for the preparation of reference systems in the absence of added ions and capping agents.

11.
Ultrason Sonochem ; 69: 105235, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32619920

RESUMEN

The influence of the sample morphology and experimental conditions towards the sonochemical dissolution of nanoscale ThO2 samples in sulfuric acid media is described. Significant sonochemical dissolution rates and yields are observed at 20 kHz under Ar/O2 atmosphere in dilute 0.5 M H2SO4 at room temperature, contrasting with the generally-reported high refractory behavior for ThO2. The dissolution of ThO2 combines the physical effects driven by acoustic cavitation phenomenon, the complexing affinity of Th(IV) in sulfuric medium and the sonochemical generation of H2O2. These sonochemical conditions further allow the observation of the partial conversion of ThO2 into a scarce Th(IV) peroxo sulfate with 1D morphology resulting from one or both following processes: dissolution/reprecipitation or formation of an intermediate Th(IV) surface complex.

12.
Nanoscale Adv ; 2(1): 214-224, 2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36134012

RESUMEN

Actinide research at the nanoscale is gaining fundamental interest due to environmental and industrial issues. The knowledge of the local structure and speciation of actinide nanoparticles, which possibly exhibit specific physico-chemical properties in comparison to bulk materials, would help in a better and reliable description of their behaviour and reactivity. Herein, the synthesis and relevant characterization of PuO2 and ThO2 nanoparticles displayed as dispersed colloids, nanopowders, or nanostructured oxide powders allow to establish a clear relationship between the size of the nanocrystals constituting these oxides and their corresponding An(iv) local structure investigated by EXAFS spectroscopy. Particularly, the first oxygen shell of the probed An(iv) evidences an analogous behaviour for both Pu and Th oxides. This observation suggests that the often observed and controversial splitting of the Pu-O shell on the Fourier transformed EXAFS signal of the PuO2 samples is attributed to a local structural disorder driven by a nanoparticle surface effect rather than to the presence of PuO2+x species.

13.
J Chromatogr A ; 1196-1197: 147-52, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18471820

RESUMEN

Here is described a green and original alternative procedure for fats and oils' determination in oleaginous seeds. Extractions were carried out using a by-product of the citrus industry as extraction solvent, namely d-limonene, instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using microwave energy: at first, extractions are attained using microwave-integrated Soxhlet, followed by the elimination of the solvent from the medium using a microwave Clevenger distillation in the second step. Oils extracted from olive seeds were compared with both conventional Soxhlet and microwave-integrated Soxhlet extraction procedures performed with n-hexane in terms of qualitative and quantitative determination. No significant difference was obtained between each extract allowing us to conclude that the proposed method is effective and valuable.


Asunto(s)
Fraccionamiento Químico/métodos , Ciclohexenos/química , Microondas , Aceites de Plantas/análisis , Terpenos/química , Fraccionamiento Químico/instrumentación , Limoneno , Estructura Molecular , Aceite de Oliva , Aceites de Plantas/química , Reproducibilidad de los Resultados , Solventes
14.
J Chromatogr A ; 1196-1197: 57-64, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18514676

RESUMEN

An improved process of Soxhlet extraction assisted by microwave, called microwave-integrated Soxhlet (MIS) is proposed for the extraction of oils and fats from different food matrixes such as oleaginous seeds, meat and bakery products. Optimal conditions for extraction were obtained using a response surface methodology and reached from a central composite design allowing us to conclude in a previous paper that the proposed process ensures complete, efficient and accurate extraction for lipids determination from olives. In this paper, the peak areas of the main fatty acids extracted with MIS from olive seeds were considered as response variables and submitted to an analysis of variance in order to determine if there was a significant link between the extraction of fatty acids and the variables required in extraction procedures. Results have shown that MIS parameters do not affect the composition of the extracts. For the generalization of the study with several food matrixes, MIS extraction results obtained were then compared to conventional Soxhlet extraction in terms of crude extract and fatty acid composition and shown that the oils extracted by MIS were quantitatively and qualitatively similar to those obtained by conventional Soxhlet extraction. MIS labstation can be considered as a new and general alternative for the extraction of lipids by using microwave energy.


Asunto(s)
Fraccionamiento Químico/métodos , Grasas de la Dieta/análisis , Microondas , Aceites/análisis , Fraccionamiento Químico/instrumentación , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Reproducibilidad de los Resultados
15.
Ultrason Sonochem ; 40(Pt A): 30-40, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28946429

RESUMEN

This manuscript describes the original structuring of Mg materials under ultrasound irradiation in mild conditions. Golf ball like extended structures can be prepared in dilute oxalic solutions at 20°C under high frequency ultrasound (200kHz). An original approach carried out through iterative 3D reconstruction of sonicated surfaces is used to describe surface evolutions and characterize the formed microstructures. A combination of SEM, ICP-AES, contact-angle measurements, and 3D image analyses allows to characterize the roughness and mass loss evolutions, and investigate the mechanism of formation for such architectures. A screening of the sonication experiments clearly points out an ultrasound frequency dependency for the effects generated at the surface. 200kHz sonication in 0.01M oxalic acid provides an unprecedented manufacturing of Mg samples which result from a controlled and localized dissolution of the material and characterized by a strong wetting surface with a roughness of 170nm. The additional formation of newly formed secondary phases appearing with surface dissolution progress is also deciphered. More generally, the ultrasonic procedure used to prepare these engineered surfaces opens new alternatives for the nano- and micro-structuring of metallic materials which may exhibit advanced physical and chemical properties of potential interest for a large community.

16.
J Chromatogr A ; 1174(1-2): 138-44, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17942103

RESUMEN

A new process of Soxhlet extraction assisted by microwave was designed and developed. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. A second-order central composite design (CCD) has been used to investigate the performance of the new device. The results provided by analysis of variance and Pareto chart, indicated that the extraction time was the most important factor followed by the leaching time. The response surface methodology allowed us to determine optimal conditions for olive oil extraction: 13 min of extraction time, 17 min of leaching time, and 720 W of irradiation power. The proposed process is suitable for lipids determination from food. Microwave-integrated Soxhlet (MIS) extraction has been compared with a conventional technique, Soxhlet extraction, for the extraction of oil from olives (Aglandau, Vaucluse, France). The oils extracted by MIS for 32 min were quantitatively (yield) and qualitatively (fatty acid composition) similar to those obtained by conventional Soxhlet extraction for 8 h. MIS is a green technology and appears as a good alternative for the extraction of fat and oils from food products.


Asunto(s)
Técnicas de Química Analítica/métodos , Microondas , Olea/química , Aceites de Plantas/aislamiento & purificación , Análisis de Varianza , Técnicas de Química Analítica/economía , Ecología , Seguridad de Equipos , Ácidos Grasos/análisis , Aceite de Oliva , Temperatura , Factores de Tiempo
17.
Sci Rep ; 7: 43514, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28256635

RESUMEN

Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV) colloid. A comparative study of nanostructured PuO2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO2 cores and hydrolyzed Pu(IV) moieties at the surface shell.

18.
Ultrason Sonochem ; 29: 198-204, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26584999

RESUMEN

The influence of the ultrasonic frequency (20 kHz, 207 kHz, and 615 kHz) towards the formation kinetics of H2O2 under Ar and Ar/(20 vol.%)O2 atmospheres was evaluated in pure water and aqueous nitric solutions. Results obtained at low frequency ultrasound demonstrate that hydrogen peroxide formation is enhanced under an Ar/O2 gas mixture whatever the sonicated medium. Nevertheless, H2O2 yields are higher in aqueous nitric solutions whatever the nature of the saturating gas. These observations are consistent at high frequency ultrasound under Ar gas notwithstanding higher yields for H2O2. Surprisingly, an inverse tendency is observed for high frequency sonolysis carried out under an Ar/O2 atmosphere: higher yields of H2O2 are measured in pure water. Further studies in the presence of pure Ar revealed a more important decomposition of nitric acid under high frequency ultrasound leading to higher yields of both HNO2 in the liquid phase and NO in the gas phase. In the presence of Ar/O2 mixture, the intrabubble oxidation of NO causes cavitation bubble depletion in O2 leading to the drop of H2O2 yield. On the other hand, it was found that for Ar/(20 vol.%)O2 mixture there is no influence of oxygen on HNO2 yield whatever the ultrasonic frequency; this is most likely explained by two processes: (i) HNO2 formation results from nitrate-ion thermolysis in the liquid reaction zone surrounding the cavitation bubble, and (ii) effective intrabubble oxidation of NOx species by oxygen to nitrate-ion.

19.
Ultrason Sonochem ; 29: 512-6, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26558997

RESUMEN

Kinetics of hydrogen formation was explored as a new chemical dosimeter allowing probing the sonochemical activity of argon-saturated water in the presence of micro- and nano-sized metal oxide particles exhibiting catalytic properties (ThO2, ZrO2, and TiO2). It was shown that the conventional sonochemical dosimeter based on H2O2 formation is hardly applicable in such systems due to catalytic degradation of H2O2 at oxide surface. The study of H2 generation revealed that at low-frequency ultrasound (20 kHz) the sonochemical water splitting is greatly improved for all studied metal oxides. The highest efficiency is observed for relatively large micrometric particles of ThO2 which is assigned to ultrasonically-driven particle fragmentation accompanied by mechanochemical water molecule splitting. The nanosized metal oxides do not exhibit particle size reduction under ultrasonic treatment but nevertheless yield higher quantities of H2. The enhancement of sonochemical water splitting in this case is most probably resulting from better bubble nucleation in heterogeneous systems. At high-frequency ultrasound (362 kHz), the effect of metal oxide particles results in a combination of nucleation and ultrasound attenuation. In contrast to 20 kHz, micrometric particles slowdown the sonolysis of water at 362 kHz due to stronger attenuation of ultrasonic waves while smaller particles show a relatively weak and various directional effects.

20.
Dalton Trans ; 45(21): 8802-15, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27145713

RESUMEN

PuO2 is considered an important material for current and future nuclear fuel; however it is a very refractive compound towards dissolution. Among other techniques, its reprocessing can be performed via complexing dissolution in concentrated and boiling nitric acid containing hydrofluoric acid, or via oxidant dissolution in the presence of reagents with redox couples having high potentials such as Ce(iv)/Ce(iii), or Ag(ii)/Ag(i). Reductive dissolution can be performed under softer conditions and is considered an alternative to these methods which may suffer from several drawbacks (corrosion, effluent management, compatibility with nuclear waste disposal, etc.). In this study, a sonochemical and reductive approach is investigated for PuO2 dissolution under relatively mild conditions. At the first stage, the experiments are performed with CeO2 as an inactive surrogate for PuO2. The quantitative dissolution of both oxides can be achieved under ultrasound (20 kHz, 0.35-0.70 W mL(-1)) in 0.5 M HNO3/0.1 M [N2H5NO3]/2 M HCOOH sparged with Ar at 33-35 °C in the presence of Ti particles as a generating source of reductive species. Ultrasound enables the depassivation of the Ti surface (usually strongly passivated in nitric solutions) through acoustic cavitation which then allows further generation of the intermediate Ti(iii) reductive species. Dissolution rates and yields can be further increased with the injection of dilute fluoride aliquots (NH4F or HF) in the sonicated solution to favor Ti chemical depassivation. The rapid and complete dissolution of PuO2 under selected conditions is accompanied by Pu(iii) accumulation in solution.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda