Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biol Psychiatry Glob Open Sci ; 4(6): 100385, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39387094

RESUMEN

Background: Chronic stress has a profound impact on circadian regulation of physiology. In turn, disruption of circadian rhythms increases the risk of developing both psychiatric and metabolic disorders. To explore the role of chronic stress in modulating the links between neural and metabolic rhythms, we characterized the circadian transcriptional regulation across different brain regions and the liver as well as serum metabolomics in mice exposed to chronic social defeat stress, a validated model for studying depressive-like behaviors. Methods: Male C57BL/6J mice underwent chronic social defeat stress, and subsequent social interaction screening identified distinct behavioral phenotypes associated with stress resilience and susceptibility. Stressed mice and their control littermates were sacrificed every 4 hours over the circadian cycle for comprehensive analyses of the circadian transcriptome in the hypothalamus, hippocampus, prefrontal cortex, and liver together with assessments of the circadian circulatory metabolome. Results: Our data demonstrate that stress adaptation was characterized by reprogramming of the brain as well as the hepatic circadian transcriptome. Stress resiliency was associated with an increase in cyclic transcription in the hypothalamus, hippocampus, and liver. Furthermore, cross-tissue analyses revealed that resilient mice had enhanced transcriptional coordination of circadian pathways between the brain and liver. Conversely, susceptibility to social stress resulted in a loss of cross-tissue coordination. Circadian serum metabolomic profiles corroborated the transcriptome data, highlighting that stress-resilient mice gained circadian rhythmicity of circulating metabolites, including bile acids and sphingomyelins. Conclusions: This study reveals that resilience to stress is characterized by enhanced metabolic rhythms and circadian brain-liver transcriptional coordination.


Chronic stress can have detrimental effects on both physical and mental health, often disrupting biological daily rhythms, known as circadian rhythms. To delve deeper into this phenomenon, we investigated how chronic stress affects circadian rhythms in the brain, liver, and blood metabolism of mice. Our study revealed that mice resilient to stress showed an increase in shared circadian biological processes between the liver and different brain regions together with enhanced rhythms in circulating metabolites. These findings propose an unprecedented link between stress adaptation and systemic circadian coordination and offer valuable insights into the mechanisms that underlie circadian disturbances seen in psychiatric disorders.

2.
Nat Metab ; 6(7): 1329-1346, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39009762

RESUMEN

Glutamine and glutamate are interconverted by several enzymes and alterations in this metabolic cycle are linked to cardiometabolic traits. Herein, we show that obesity-associated insulin resistance is characterized by decreased plasma and white adipose tissue glutamine-to-glutamate ratios. We couple these stoichiometric changes to perturbed fat cell glutaminase and glutamine synthase messenger RNA and protein abundance, which together promote glutaminolysis. In human white adipocytes, reductions in glutaminase activity promote aerobic glycolysis and mitochondrial oxidative capacity via increases in hypoxia-inducible factor 1α abundance, lactate levels and p38 mitogen-activated protein kinase signalling. Systemic glutaminase inhibition in male and female mice, or genetically in adipocytes of male mice, triggers the activation of thermogenic gene programs in inguinal adipocytes. Consequently, the knockout mice display higher energy expenditure and improved glucose tolerance compared to control littermates, even under high-fat diet conditions. Altogether, our findings highlight white adipocyte glutamine turnover as an important determinant of energy expenditure and metabolic health.


Asunto(s)
Adipocitos , Metabolismo Energético , Glutaminasa , Ratones Noqueados , Animales , Glutaminasa/metabolismo , Ratones , Humanos , Masculino , Adipocitos/metabolismo , Femenino , Obesidad/metabolismo , Resistencia a la Insulina , Glutamina/metabolismo , Dieta Alta en Grasa , Glucólisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda