Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
PLoS Genet ; 20(3): e1011200, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470914

RESUMEN

Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.


Asunto(s)
Brachypodium , Retroelementos , Retroelementos/genética , Genoma de Planta/genética , Brachypodium/genética , ARN Interferente Pequeño , Variaciones en el Número de Copia de ADN , Secuencias Repetidas Terminales/genética , Filogenia , Evolución Molecular
2.
PLoS Genet ; 19(5): e1010706, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37163541

RESUMEN

Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon.


Asunto(s)
Brachypodium , Fitocromo , Proteínas de Plantas , Factores de Transcripción , Brachypodium/genética , Brachypodium/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Fotoperiodo , Factores de Transcripción/metabolismo , Epistasis Genética , Mutación , Perfilación de la Expresión Génica , Flores/metabolismo
3.
Plant Physiol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709683

RESUMEN

Plants respond to increased CO2 concentrations through stomatal closure, which can contribute to increased water use efficiency. Grasses display faster stomatal responses than eudicots due to dumbbell-shaped guard cells flanked by subsidiary cells working in opposition. However, forward genetic screening for stomatal CO2 signal transduction mutants in grasses has yet to be reported. The grass model Brachypodium distachyon is closely related to agronomically important cereal crops, sharing largely collinear genomes. To gain insights into CO2 control mechanisms of stomatal movements in grasses, we developed an unbiased forward genetic screen with an EMS-mutagenized Brachypodium distachyon M5 generation population using infrared imaging to identify plants with altered leaf temperatures at elevated CO2. Among isolated mutants, a "chill1" mutant exhibited cooler leaf temperatures than wildtype Bd21-3 parent control plants after exposure to increased [CO2]. chill1 plants showed strongly impaired high CO2-induced stomatal closure despite retaining a robust abscisic acid-induced stomatal closing response. Through bulked segregant whole-genome-sequencing analyses followed by analyses of further backcrossed F4 generation plants and generation and characterization of sodium-azide and CRISPR-cas9 mutants, chill1 was mapped to a protein kinase, Mitogen-Activated Protein Kinase 5 (BdMPK5). The chill1 mutation impaired BdMPK5 protein-mediated CO2/HCO3- sensing together with the High Temperature 1 (HT1) Raf-like kinase in vitro. Furthermore, AlphaFold2-directed structural modeling predicted that the identified BdMPK5-D90N chill1 mutant residue is located at the interface of BdMPK5 with the BdHT1 Raf-like kinase. BdMPK5 is a key signaling component that mediates CO2-induced stomatal movements and is proposed to function as a component of the primary CO2 sensor in grasses.

4.
Nucleic Acids Res ; 51(16): 8383-8401, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37526283

RESUMEN

Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, an updateable data resource consisting of transcript abundance assays spanning 18 diverse species. To integrate across these diverse genotypes, we analyzed expression profiles, built gene clusters that exhibited tissue/condition specific expression, and tested for transcriptional response to environmental queues. We discovered extensive phylogenetically constrained and condition-specific expression profiles for genes without any previously documented functional annotation. Such conserved expression patterns and tightly co-expressed gene clusters let us assign expression derived additional biological information to 64 495 genes with otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.gov/), providing bulk access to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and visualize gene ontology and pathway enrichments.


Asunto(s)
Genes de Plantas , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Filogenia , Programas Informáticos , Transcriptoma/genética , Atlas como Asunto
5.
Plant Mol Biol ; 114(4): 81, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940986

RESUMEN

In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.


Asunto(s)
Brachypodium , Flores , Regulación de la Expresión Génica de las Plantas , Meristema , Proteínas de Plantas , Plantas Modificadas Genéticamente , Brachypodium/genética , Brachypodium/crecimiento & desarrollo , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Mol Ecol ; : e17513, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39188107

RESUMEN

Brachypodium stacei is the most ancestral lineage in the genus Brachypodium, a model system for grass functional genomics. B. stacei shows striking and sometimes contradictory biological and evolutionary features, including a high selfing rate yet extensive admixture, an ancient Miocene origin yet with recent evolutionary radiation, and adaptation to different dry climate conditions in its narrow distribution range. Therefore, it constitutes an ideal system to study these life history traits. We studied the phylogeography of 17 native circum-Mediterranean B. stacei populations (39 individuals) using genome-wide RADseq SNP data and complete plastome sequences. Nuclear SNP data revealed the existence of six distinct genetic clusters, low levels of intra-population genetic diversity and high selfing rates, albeit with signatures of admixture. Coalescence-based dating analysis detected a recent split between crown lineages in the Late Quaternary. Plastome sequences showed incongruent evolutionary relationships with those recovered by the nuclear data, suggesting interbreeding and chloroplast capture events between genetically distant populations. Demographic and population dispersal coalescent models identified an ancestral origin of B. stacei in the western-central Mediterranean islands, followed by an early colonization of the Canary Islands and two independent colonization events of the eastern Mediterranean region through long-distance dispersal and bottleneck events as the most likely evolutionary history. Climate niche data identified three arid niches of B. stacei in the southern Mediterranean region. Our findings indicate that the phylogeography of B. stacei populations was shaped by recent radiations, frequent extinctions, long-distance dispersal events, occasional interbreeding, and adaptation to local climates.

7.
Plant J ; 109(6): 1559-1574, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953105

RESUMEN

KARRIKIN INSENSITIVE2 (KAI2) is an α/ß-hydrolase required for plant responses to karrikins, which are abiotic butenolides that can influence seed germination and seedling growth. Although represented by four angiosperm species, loss-of-function kai2 mutants are phenotypically inconsistent and incompletely characterised, resulting in uncertainties about the core functions of KAI2 in plant development. Here we characterised the developmental functions of KAI2 in the grass Brachypodium distachyon using molecular, physiological and biochemical approaches. Bdkai2 mutants exhibit increased internode elongation and reduced leaf chlorophyll levels, but only a modest increase in water loss from detached leaves. Bdkai2 shows increased numbers of lateral roots and reduced root hair growth, and fails to support normal root colonisation by arbuscular-mycorrhizal (AM) fungi. The karrikins KAR1 and KAR2 , and the strigolactone (SL) analogue rac-GR24, each elicit overlapping but distinct changes to the shoot transcriptome via BdKAI2. Finally, we show that BdKAI2 exhibits a clear ligand preference for desmethyl butenolides and weak responses to methyl-substituted SL analogues such as GR24. Our findings suggest that KAI2 has multiple roles in shoot development, root system development and transcriptional regulation in grasses. Although KAI2-dependent AM symbiosis is likely conserved within monocots, the magnitude of the effect of KAI2 on water relations may vary across angiosperms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Proteínas de Arabidopsis/fisiología , Brachypodium/genética , Furanos , Lactonas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/genética , Piranos , Simbiosis
8.
Mol Ecol ; 32(10): 2674-2687, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35000239

RESUMEN

The shifts in adaptive strategies revealed by ecological succession and the mechanisms that facilitate these shifts are fundamental to ecology. These adaptive strategies could be particularly important in communities of arbuscular mycorrhizal fungi (AMF) mutualistic with sorghum, where strong AMF succession replaces initially ruderal species with competitive ones and where the strongest plant response to drought is to manage these AMF. Although most studies of agriculturally important fungi focus on parasites, the mutualistic symbionts, AMF, constitute a research system of human-associated fungi whose relative simplicity and synchrony are conducive to experimental ecology. First, we hypothesize that, when irrigation is stopped to mimic drought, competitive AMF species should be replaced by AMF species tolerant to drought stress. We then, for the first time, correlate AMF abundance and host plant transcription to test two novel hypotheses about the mechanisms behind the shift from ruderal to competitive AMF. Surprisingly, despite imposing drought stress, we found no stress-tolerant AMF, probably due to our agricultural system having been irrigated for nearly six decades. Remarkably, we found strong and differential correlation between the successional shift from ruderal to competitive AMF and sorghum genes whose products (i) produce and release strigolactone signals, (ii) perceive mycorrhizal-lipochitinoligosaccharide (Myc-LCO) signals, (iii) provide plant lipid and sugar to AMF, and (iv) import minerals and water provided by AMF. These novel insights frame new hypotheses about AMF adaptive evolution and suggest a rationale for selecting AMF to reduce inputs and maximize yields in commercial agriculture.


Asunto(s)
Micorrizas , Humanos , Micorrizas/genética , Simbiosis/genética , Plantas/genética , Plantas/microbiología , Agricultura , Expresión Génica , Raíces de Plantas/microbiología , Microbiología del Suelo , Suelo
9.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047802

RESUMEN

Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use.


Asunto(s)
Brachypodium , Glucanos , Glucanos/metabolismo , Almidón/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Germinación/genética , Endospermo/genética , Endospermo/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
10.
New Phytol ; 236(6): 2233-2248, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36059081

RESUMEN

Although some nucleotide binding, leucine-rich repeat immune receptor (NLR) proteins conferring resistance to specific viruses have been identified in dicot plants, NLR proteins involved in viral resistance have not been described in monocots. We have used map-based cloning to isolate the CC-NB-LRR (CNL) Barley stripe mosaic virus (BSMV) resistance gene barley stripe resistance 1 (BSR1) from Brachypodium distachyon Bd3-1 inbred line. Stable BSR1 transgenic Brachypodium line Bd21-3, barley (Golden Promise) and wheat (Kenong 199) plants developed resistance against BSMV ND18 strain. Allelic variation analyses indicated that BSR1 is present in several Brachypodium accessions collected from countries in the Middle East. Protein domain swaps revealed that the intact LRR domain and the C-terminus of BSR1 are required for resistance. BSR1 interacts with the BSMV ND18 TGB1 protein in planta and shows temperature-sensitive antiviral resistance. The R390 and T392 residues of TGB1ND (ND18 strain) and the G196 and K197 residues within the BSR1 P-loop motif are key amino acids required for immune activation. BSR1 is the first cloned virus resistance gene encoding a typical CNL protein in monocots, highlighting the utility of the Brachypodium model for isolation and analysis of agronomically important genes for crop improvement.


Asunto(s)
Brachypodium , Hordeum , Hordeum/genética , Brachypodium/genética , Proteínas Repetidas Ricas en Leucina , Dominios Proteicos
11.
J Exp Bot ; 73(15): 5306-5321, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35512445

RESUMEN

Nitrogen (N) fixation in cereals by root-associated bacteria is a promising solution for reducing use of chemical N fertilizers in agriculture. However, plant and bacterial responses are unpredictable across environments. We hypothesized that cereal responses to N-fixing bacteria are dynamic, depending on N supply and time. To quantify the dynamics, a gnotobiotic, fabricated ecosystem (EcoFAB) was adapted to analyse N mass balance, to image shoot and root growth, and to measure gene expression of Brachypodium distachyon inoculated with the N-fixing bacterium Herbaspirillum seropedicae. Phenotyping throughput of EcoFAB-N was 25-30 plants h-1 with open software and imaging systems. Herbaspirillum seropedicae inoculation of B. distachyon shifted root and shoot growth, nitrate versus ammonium uptake, and gene expression with time; directions and magnitude depended on N availability. Primary roots were longer and root hairs shorter regardless of N, with stronger changes at low N. At higher N, H. seropedicae provided 11% of the total plant N that came from sources other than the seed or the nutrient solution. The time-resolved phenotypic and molecular data point to distinct modes of action: at 5 mM NH4NO3 the benefit appears through N fixation, while at 0.5 mM NH4NO3 the mechanism appears to be plant physiological, with H. seropedicae promoting uptake of N from the root medium.Future work could fine-tune plant and root-associated microorganisms to growth and nutrient dynamics.


Asunto(s)
Compuestos de Amonio , Brachypodium , Herbaspirillum , Compuestos de Amonio/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Ecosistema , Grano Comestible/metabolismo , Herbaspirillum/genética , Herbaspirillum/metabolismo , Nitratos/metabolismo , Raíces de Plantas/metabolismo
12.
Proc Natl Acad Sci U S A ; 116(52): 27124-27132, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31806758

RESUMEN

Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [Sorghum bicolor (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant. We conducted a large-scale field experiment, imposing preflowering and postflowering drought stress on 2 genotypes of sorghum across a tightly resolved time series, from plant emergence to postanthesis, resulting in a dataset of nearly 400 transcriptomes. We observed a fast and global transcriptomic response in leaf and root tissues with clear temporal patterns, including modulation of well-known drought pathways. We also identified genotypic differences in core photosynthesis and reactive oxygen species scavenging pathways, highlighting possible mechanisms of drought tolerance and of the delayed senescence, characteristic of the stay-green phenotype. Finally, we discovered a large-scale depletion in the expression of genes critical to arbuscular mycorrhizal (AM) symbiosis, with a corresponding drop in AM fungal mass in the plants' roots.

13.
Plant J ; 103(5): 1810-1825, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32506573

RESUMEN

Nucleolar dominance (ND) consists of the reversible silencing of 35S/45S rDNA loci inherited from one of the ancestors of an allopolyploid. The molecular mechanisms by which one ancestral rDNA set is selected for silencing remain unclear. We applied a combination of molecular (Southern blot hybridization and reverse-transcription cleaved amplified polymorphic sequence analysis), genomic (analysis of variants) and cytogenetic (fluorescence in situ hybridization) approaches to study the structure, expression and epigenetic landscape of 35S rDNA in an allotetraploid grass that exhibits ND, Brachypodium hybridum (genome composition DDSS), and its putative progenitors, Brachypodium distachyon (DD) and Brachypodium stacei (SS). In progenitor genomes, B. stacei showed a higher intragenomic heterogeneity of rDNA compared with B. distachyon. In all studied accessions of B. hybridum, there was a reduction in the copy number of S homoeologues, which was accompanied by their inactive transcriptional status. The involvement of DNA methylation in CG and CHG contexts in the silencing of the S-genome rDNA loci was revealed. In the B. hybridum allotetraploid, ND is stabilized towards the D-genome units, irrespective of the polyphyletic origin of the species, and does not seem to be influenced by homoeologous 35S rDNA ratios and developmental stage.


Asunto(s)
Brachypodium/genética , Genes de Plantas/genética , Genes de ARNr/genética , Tetraploidía , Southern Blotting , Brachypodium/metabolismo , Cromosomas de las Plantas/genética , Variaciones en el Número de Copia de ADN/genética , Metilación de ADN/genética , Evolución Molecular , Sitios Genéticos/genética , Genoma de Planta/genética , Polimorfismo Genético/genética
14.
BMC Plant Biol ; 21(1): 196, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892630

RESUMEN

BACKGROUND: The vascular system of plants consists of two main tissue types, xylem and phloem. These tissues are organized into vascular bundles that are arranged into a complex network running through the plant that is essential for the viability of land plants. Despite their obvious importance, the genes involved in the organization of vascular tissues remain poorly understood in grasses. RESULTS: We studied in detail the vascular network in stems from the model grass Brachypodium distachyon (Brachypodium) and identified a large set of genes differentially expressed in vascular bundles versus parenchyma tissues. To decipher the underlying molecular mechanisms of vascularization in grasses, we conducted a forward genetic screen for abnormal vasculature. We identified a mutation that severely affected the organization of vascular tissues. This mutant displayed defects in anastomosis of the vascular network and uncommon amphivasal vascular bundles. The causal mutation is a premature stop codon in ERECTA, a LRR receptor-like serine/threonine-protein kinase. Mutations in this gene are pleiotropic indicating that it serves multiple roles during plant development. This mutant also displayed changes in cell wall composition, gene expression and hormone homeostasis. CONCLUSION: In summary, ERECTA has a pleiotropic role in Brachypodium. We propose a major role of ERECTA in vasculature anastomosis and vascular tissue organization in Brachypodium.


Asunto(s)
Brachypodium/genética , Floema/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Xilema/crecimiento & desarrollo , Brachypodium/crecimiento & desarrollo , Brachypodium/metabolismo , Floema/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Xilema/genética
15.
Plant J ; 100(5): 1022-1035, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31411777

RESUMEN

Powdery mildew (Golovinomyces cichoracearum), one of the most prolific obligate biotrophic fungal pathogens worldwide, infects its host by penetrating the plant cell wall without activating the plant's innate immune system. The Arabidopsis mutant powdery mildew resistant 5 (pmr5) carries a mutation in a putative pectin acetyltransferase gene that confers enhanced resistance to powdery mildew. Here, we show that heterologously expressed PMR5 protein transfers acetyl groups from [14 C]-acetyl-CoA to oligogalacturonides. Through site-directed mutagenesis, we show that three amino acids within a highly conserved esterase domain in putative PMR5 orthologs are necessary for PMR5 function. A suppressor screen of mutagenized pmr5 seed selecting for increased powdery mildew susceptibility identified two previously characterized genes affecting the acetylation of plant cell wall polysaccharides, RWA2 and TBR. The rwa2 and tbr mutants also suppress powdery mildew disease resistance in pmr6, a mutant defective in a putative pectate lyase gene. Cell wall analysis of pmr5 and pmr6, and their rwa2 and tbr suppressor mutants, demonstrates minor shifts in cellulose and pectin composition. In direct contrast to their increased powdery mildew resistance, both pmr5 and pmr6 plants are highly susceptibile to multiple strains of the generalist necrotroph Botrytis cinerea, and have decreased camalexin production upon infection with B. cinerea. These results illustrate that cell wall composition is intimately connected to fungal disease resistance and outline a potential route for engineering powdery mildew resistance into susceptible crop species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Resistencia a la Enfermedad/genética , Pectinas/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Ascomicetos/patogenicidad , Botrytis/patogenicidad , Pared Celular/química , Pared Celular/genética , Celulosa/genética , Celulosa/metabolismo , Mutación , Pectinas/química , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética
16.
New Phytol ; 227(6): 1725-1735, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32173866

RESUMEN

The timing of reproduction is a critical developmental decision in the life cycle of many plant species. Fine mapping of a rapid-flowering mutant was done using whole-genome sequence data from bulked DNA from a segregating F2 mapping populations. The causative mutation maps to a gene orthologous with the third subunit of DNA polymerase δ (POLD3), a previously uncharacterized gene in plants. Expression analyses of POLD3 were conducted via real time qPCR to determine when and in what tissues the gene is expressed. To better understand the molecular basis of the rapid-flowering phenotype, transcriptomic analyses were conducted in the mutant vs wild-type. Consistent with the rapid-flowering mutant phenotype, a range of genes involved in floral induction and flower development are upregulated in the mutant. Our results provide the first characterization of the developmental and gene expression phenotypes that result from a lesion in POLD3 in plants.


Asunto(s)
Brachypodium , Brachypodium/genética , Brachypodium/metabolismo , ADN Polimerasa III , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción
17.
Plant J ; 96(2): 438-451, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30044522

RESUMEN

Grasses are essential plants for ecosystem functioning. Quantifying the selective pressures that act on natural variation in grass species is therefore essential regarding biodiversity maintenance. In this study, we investigate the selection pressures that act on two distinct populations of the grass model Brachypodium distachyon without prior knowledge about the traits under selection. We took advantage of whole-genome sequencing data produced for 44 natural accessions of B. distachyon and used complementary genome-wide selection scans (GWSS) methods to detect genomic regions under balancing and positive selection. We show that selection is shaping genetic diversity at multiple temporal and spatial scales in this species, and affects different genomic regions across the two populations. Gene ontology annotation of candidate genes reveals that pathogens may constitute important factors of positive and balancing selection in B. distachyon. We eventually cross-validated our results with quantitative trait locus data available for leaf-rust resistance in this species and demonstrate that, when paired with classical trait mapping, GWSS can help pinpointing candidate genes for further molecular validation. Thanks to a near base-perfect reference genome and the large collection of freely available natural accessions collected across its natural range, B. distachyon appears as a prime system for studies in ecology, population genomics and evolutionary biology.


Asunto(s)
Brachypodium/genética , Variación Genética , Genoma de Planta/genética , Genómica , Sitios de Carácter Cuantitativo/genética , Adaptación Fisiológica , Brachypodium/fisiología , Ecosistema , Interacciones Huésped-Patógeno , Aprendizaje Automático , Modelos Biológicos , Fenotipo , Selección Genética , Estrés Fisiológico
18.
Plant J ; 96(3): 532-545, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30054951

RESUMEN

Grass biomass is comprised chiefly of secondary walls that surround fiber and xylem cells. A regulatory network of interacting transcription factors in part regulates cell wall thickening. We identified Brachypodium distachyon SECONDARY WALL ASSOCIATED MYB1 (SWAM1) as a potential regulator of secondary cell wall biosynthesis based on gene expression, phylogeny, and transgenic plant phenotypes. SWAM1 interacts with cellulose and lignin gene promoters with preferential binding to AC-rich sequence motifs commonly found in the promoters of cell wall-related genes. SWAM1 overexpression (SWAM-OE) lines had greater above-ground biomass with only a slight change in flowering time while SWAM1 dominant repressor (SWAM1-DR) plants were severely dwarfed with a striking reduction in lignin of sclerenchyma fibers and stem epidermal cell length. Cellulose, hemicellulose, and lignin genes were significantly down-regulated in SWAM1-DR plants and up-regulated in SWAM1-OE plants. There was no reduction in bioconversion yield in SWAM1-OE lines; however, it was significantly increased for SWAM1-DR samples. Phylogenetic and syntenic analyses strongly suggest that the SWAM1 clade was present in the last common ancestor between eudicots and grasses, but is not in the Brassicaceae. Collectively, these data suggest that SWAM1 is a transcriptional activator of secondary cell wall thickening and biomass accumulation in B. distachyon.


Asunto(s)
Brachypodium/genética , Proteínas de Plantas/genética , Biomasa , Brachypodium/crecimiento & desarrollo , Brassicaceae/genética , Brassicaceae/crecimiento & desarrollo , Pared Celular/metabolismo , Celulosa/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Polisacáridos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
BMC Genomics ; 20(1): 580, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31299888

RESUMEN

BACKGROUND: Our understanding of polyploid genomes is limited by our inability to definitively assign sequences to a specific subgenome without extensive prior knowledge like high resolution genetic maps or genome sequences of diploid progenitors. In theory, existing methods for assigning sequences to individual species from metagenome samples could be used to separate subgenomes in polyploid organisms, however, these methods rely on differences in coarse genome properties like GC content or sequences from related species. Thus, these approaches do not work for subgenomes where gross features are indistinguishable and related genomes are lacking. Here we describe a method that uses rapidly evolving repetitive DNA to circumvent these limitations. RESULTS: By using short, repetitive, DNA sequences as species-specific signals we separated closely related genomes from test datasets and subgenomes from two polyploid plants, tobacco and wheat, without any prior knowledge. CONCLUSION: This approach is ideal for separating the subgenomes of polyploid species with unsequenced or unknown progenitor genomes.


Asunto(s)
ADN de Plantas/genética , Evolución Molecular , Genómica/métodos , Poliploidía , Secuencias Repetitivas de Ácidos Nucleicos/genética , Aprendizaje Automático no Supervisado , Genoma de Planta/genética , Filogenia , Nicotiana/genética , Triticum/genética
20.
New Phytol ; 222(2): 1149-1160, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30585637

RESUMEN

There is a dynamic reciprocity between plants and their environment: soil physiochemical properties influence plant morphology and metabolism, and root morphology and exudates shape the environment surrounding roots. Here, we investigate the reproducibility of plant trait changes in response to three growth environments. We utilized fabricated ecosystem (EcoFAB) devices to grow the model grass Brachypodium distachyon in three distinct media across four laboratories: phosphate-sufficient and -deficient mineral media allowed assessment of the effects of phosphate starvation, and a complex, sterile soil extract represented a more natural environment with yet uncharacterized effects on plant growth and metabolism. Tissue weight and phosphate content, total root length, and root tissue and exudate metabolic profiles were consistent across laboratories and distinct between experimental treatments. Plants grown in soil extract were morphologically and metabolically distinct, with root hairs four times longer than with other growth conditions. Further, plants depleted half of the metabolites investigated from the soil extract. To interact with their environment, plants not only adapt morphology and release complex metabolite mixtures, but also selectively deplete a range of soil-derived metabolites. The EcoFABs utilized here generated high interlaboratory reproducibility, demonstrating their value in standardized investigations of plant traits.


Asunto(s)
Brachypodium/fisiología , Ecosistema , Metaboloma , Modelos Biológicos , Suelo/química , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda