Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 379(2207): 20200368, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34398659

RESUMEN

Modern production systems can benefit greatly from integrated and up-to-date digital representations. Their applications range from consistency checks during the design phase to smart manufacturing to maintenance support. Such digital twins not only require data, information and knowledge as inputs but can also be considered integrated models themselves. This paper provides an overview of data, information and knowledge typically available throughout the lifecycle of production systems and the variety of applications driven by data analysis, expert knowledge and knowledge-based systems. On this basis, we describe the potential for combining data analysis and knowledge-based systems in the context of production systems and describe two feasibility studies that demonstrate how knowledge-based systems can be created using data analysis. This article is part of the theme issue 'Towards symbiotic autonomous systems'.

2.
Sensors (Basel) ; 21(3)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499280

RESUMEN

Data collection from distributed automated production systems is one of the main prerequisites to leverage information gain from data analysis in the context of Industrie 4.0, e.g., for the optimization of product quality. However, the realization of data collection architectures is associated with immense implementation efforts due to the heterogeneity of systems, protocols, and interfaces, as well as the multitude of involved disciplines in such projects. Therefore, this paper contributes with an approach for the model-driven generation of data collection architectures to significantly lower manual implementation efforts. Via model transformations, the corresponding source code is automatically generated from formalized models that can be created using a graphical domain-specific language. The automatically generated architecture features support for various established IIoT protocols. In a lab-scale evaluation and a unique generalized extrapolation study, the significant effort savings compared to manual programming could be quantified. In conclusion, the proposed approach can successfully mitigate the current scientific and industrial challenges to enable wide-scale access to industrial data.

3.
Sensors (Basel) ; 20(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233733

RESUMEN

Liquid leakage from pipelines is a critical issue in large-scale chemical process plants since it can affect the normal operation of the plant and pose unsafe and hazardous situations. Therefore, leakage detection in the early stages can prevent serious damage. Developing a vision-based inspection system by means of IR imaging can be a promising approach for accurate leakage detection. IR cameras can capture the effect of leaking drops if they have higher (or lower) temperature than their surroundings. Since the leaking drops can be observed in an IR video as a repetitive phenomenon with specific patterns, motion pattern detection methods can be utilized for leakage detection. In this paper, an approach based on the Kalman filter is proposed to track the motion of leaking drops and differentiate them from noise. The motion patterns are learned from the training data and applied to the test data to evaluate the accuracy of the method. For this purpose, a laboratory demonstrator plant is assembled to simulate the leakages from pipelines, and to generate training and test videos. The results show that the proposed method can detect the leaking drops by tracking them based on obtained motion patterns. Furthermore, the possibilities and conditions for applying the proposed method in a real industrial chemical plant are discussed at the end.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda