Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(30): e2407159121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012820

RESUMEN

Mutations in the tyrosine phosphatase Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting autoinhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8 to 10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine-binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Dominios Homologos src , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Humanos , Dominios Homologos src/genética , Unión Proteica , Mutación , Fosforilación , Sitios de Unión/genética , Fosfotirosina/metabolismo , Ligandos
2.
J Biomol NMR ; 75(8-9): 347-363, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34505210

RESUMEN

The development of methyl transverse relaxation optimized spectroscopy has greatly facilitated the study of macromolecular assemblies by solution NMR spectroscopy. However, limited sample solubility and stability has hindered application of this technique to ongoing studies of complexes formed on membranes by the neuronal SNAREs that mediate neurotransmitter release and synaptotagmin-1, the Ca2+ sensor that triggers release. Since the 1H NMR signal of a tBu group attached to a large protein or complex can be observed with high sensitivity if the group retains high mobility, we have explored the use of this strategy to analyze presynaptic complexes involved in neurotransmitter release. For this purpose, we attached tBu groups at single cysteines of fragments of synaptotagmin-1, complexin-1 and the neuronal SNAREs by reaction with 5-(tert-butyldisulfaneyl)-2-nitrobenzoic acid (BDSNB), tBu iodoacetamide or tBu acrylate. The tBu resonances of the tagged proteins were generally sharp and intense, although tBu groups attached with BDSNB had a tendency to exhibit somewhat broader resonances that likely result because of the shorter linkage between the tBu and the tagged cysteine. Incorporation of the tagged proteins into complexes on nanodiscs led to severe broadening of the tBu resonances in some cases. However, sharp tBu resonances could readily be observed for some complexes of more than 200 kDa at low micromolar concentrations. Our results show that tagging of proteins with tBu groups provides a powerful approach to study large biomolecular assemblies of limited stability and/or solubility that may be applicable even at nanomolar concentrations.


Asunto(s)
Neuronas , Proteínas SNARE , Sustancias Macromoleculares , Espectroscopía de Resonancia Magnética , Resonancia Magnética Nuclear Biomolecular
3.
Biophys J ; 118(3): 643-656, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31952804

RESUMEN

Synaptotagmin-1 (Syt1) is a calcium sensor protein that is critical for neurotransmission and is therefore extensively studied. Here, we use pairs of optically trapped beads coated with SNARE-free synthetic membranes to investigate Syt1-induced membrane remodeling. This activity is compared with that of Doc2b, which contains a conserved C2AB domain and induces membrane tethering and hemifusion in this cell-free model. We find that the soluble C2AB domain of Syt1 strongly affects the probability and strength of membrane-membrane interactions in a strictly Ca2+- and protein-dependent manner. Single-membrane loading of Syt1 yielded the highest probability and force of membrane interactions, whereas in contrast, Doc2b was more effective after loading both membranes. A lipid-mixing assay with confocal imaging reveals that both Syt1 and Doc2b are able to induce hemifusion; however, significantly higher Syt1 concentrations are required. Consistently, both C2AB fragments cause a reduction in the membrane-bending modulus, as measured by a method based on atomic force microscopy. This lowering of the energy required for membrane deformation may contribute to Ca2+-induced fusion.


Asunto(s)
Proteínas de Unión al Calcio , Calcio , Fusión de Membrana , Proteínas del Tejido Nervioso , Sinaptotagmina I , Calcio/metabolismo , Humanos , Unión Proteica , Proteínas SNARE/metabolismo , Transmisión Sináptica , Sinaptotagmina I/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(40): E8518-E8527, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923929

RESUMEN

Synaptotagmins (Syts) act as Ca2+ sensors in neurotransmitter release by virtue of Ca2+-binding to their two C2 domains, but their mechanisms of action remain unclear. Puzzlingly, Ca2+-binding to the C2B domain appears to dominate Syt1 function in synchronous release, whereas Ca2+-binding to the C2A domain mediates Syt7 function in asynchronous release. Here we show that crystal structures of the Syt7 C2A domain and C2AB region, and analyses of intrinsic Ca2+-binding to the Syt7 C2 domains using isothermal titration calorimetry, did not reveal major differences that could explain functional differentiation between Syt7 and Syt1. However, using liposome titrations under Ca2+ saturating conditions, we show that the Syt7 C2A domain has a very high membrane affinity and dominates phospholipid binding to Syt7 in the presence or absence of l-α-phosphatidylinositol 4,5-diphosphate (PIP2). For Syt1, the two Ca2+-saturated C2 domains have similar affinities for membranes lacking PIP2, but the C2B domain dominates binding to PIP2-containing membranes. Mutagenesis revealed that the dramatic differences in membrane affinity between the Syt1 and Syt7 C2A domains arise in part from apparently conservative residue substitutions, showing how striking biochemical and functional differences can result from the cumulative effects of subtle residue substitutions. Viewed together, our results suggest that membrane affinity may be a key determinant of the functions of Syt C2 domains in neurotransmitter release.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Neurotransmisores/metabolismo , Sinaptotagmina I/metabolismo , Sinaptotagminas/metabolismo , Animales , Cristalografía por Rayos X , Liposomas , Unión Proteica , Dominios Proteicos , Ratas , Transmisión Sináptica , Sinaptotagmina I/química , Sinaptotagmina I/genética , Sinaptotagminas/química , Sinaptotagminas/genética
5.
bioRxiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37502916

RESUMEN

Mutations in the tyrosine phosphatase SHP2 are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting auto-inhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that, while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8-10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.

6.
Elife ; 122023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927728

RESUMEN

Tyrosine kinases and SH2 (phosphotyrosine recognition) domains have binding specificities that depend on the amino acid sequence surrounding the target (phospho)tyrosine residue. Although the preferred recognition motifs of many kinases and SH2 domains are known, we lack a quantitative description of sequence specificity that could guide predictions about signaling pathways or be used to design sequences for biomedical applications. Here, we present a platform that combines genetically encoded peptide libraries and deep sequencing to profile sequence recognition by tyrosine kinases and SH2 domains. We screened several tyrosine kinases against a million-peptide random library and used the resulting profiles to design high-activity sequences. We also screened several kinases against a library containing thousands of human proteome-derived peptides and their naturally-occurring variants. These screens recapitulated independently measured phosphorylation rates and revealed hundreds of phosphosite-proximal mutations that impact phosphosite recognition by tyrosine kinases. We extended this platform to the analysis of SH2 domains and showed that screens could predict relative binding affinities. Finally, we expanded our method to assess the impact of non-canonical and post-translationally modified amino acids on sequence recognition. This specificity profiling platform will shed new light on phosphotyrosine signaling and could readily be adapted to other protein modification/recognition domains.


Asunto(s)
Proteínas Tirosina Quinasas , Dominios Homologos src , Humanos , Proteínas Tirosina Quinasas/metabolismo , Fosfotirosina , Fosfopéptidos/química , Tirosina/metabolismo , Biblioteca de Péptidos , Fosfotransferasas/metabolismo
7.
Elife ; 92020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32808925

RESUMEN

The Ca2+ sensor synaptotagmin-1 and the SNARE complex cooperate to trigger neurotransmitter release. Structural studies elucidated three distinct synaptotagmin-1-SNARE complex binding modes involving 'polybasic', 'primary' and 'tripartite' interfaces of synaptotagmin-1. We investigated these interactions using NMR and fluorescence spectroscopy. Synaptotagmin-1 binds to the SNARE complex through the polybasic and primary interfaces in solution. Ca2+-free synaptotagmin-1 binds to SNARE complexes anchored on PIP2-containing nanodiscs. R398Q/R399Q and E295A/Y338W mutations at the primary interface, which strongly impair neurotransmitter release, disrupt and enhance synaptotagmin-1-SNARE complex binding, respectively. Ca2+ induces tight binding of synaptotagmin-1 to PIP2-containing nanodiscs, disrupting synaptotagmin-1-SNARE interactions. Specific effects of mutations in the polybasic region on Ca2+-dependent synaptotagmin-1-PIP2-membrane interactions correlate with their effects on release. Our data suggest that synaptotagmin-1 binds to the SNARE complex through the primary interface and that Ca2+ releases this interaction, inducing PIP2/membrane binding and allowing cooperation between synaptotagmin-1 and the SNAREs in membrane fusion to trigger release.


Inside the brain, cells called neurons relay messages from one place to another in the form of electrical signals. When an electrical signal reaches a junction between two neurons (known as a synapse) it triggers small particles called calcium ions to enter one of the cells. This influx of calcium causes vesicles to fuse with the membrane surrounding the neuron and release molecules called neurotransmitters into the small gap between the two neurons. These molecules travel across the gap to activate an electrical signal in the second neuron which then carries the message onwards. A protein known as synaptotagmin-1 senses calcium ions at synapses and works together with a group of proteins known as the SNARE complex to help vesicles fuse with the cell membrane. Previous studies have reported three different structures of synaptotagmin-1 bound to the SNARE complex in a different way. But it was unclear which of these binding states actually result in the release of neurotransmitters. To address this question, Voleti, Jaczynska and Rizo studied how and when synptotagmin-1 and the SNARE complex bind together using two approaches known as NMR spectroscopy and fluorescence spectroscopy. The experiments suggest that before calcium enters the synapse, synaptotagmin-1 is already bound to a surface on the SNARE complex. This binding inhibits the release of neurotransmitters and has been reported in previous studies. Adding calcium ions causes synaptotagmin-1 to be released from the SNARE complex. This allows synaptotagmin-1 to interact with the membrane and cooperate with the SNARE complex to trigger vesicle fusion. Finding out how neurons release neurotransmitters at synapses may help us to understand how the brain works. This could provide new insights into how defects in the synapse lead to neurological disorders, such as schizophrenia, and potentially aid the development of new treatments for such conditions.


Asunto(s)
Calcio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas SNARE/metabolismo , Transmisión Sináptica/fisiología , Sinaptotagmina I/metabolismo , Animales , Membrana Celular/fisiología , Ratas
8.
Nat Struct Mol Biol ; 22(7): 555-64, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26030874

RESUMEN

Rapid neurotransmitter release depends on the Ca2+ sensor Synaptotagmin-1 (Syt1) and the SNARE complex formed by synaptobrevin, syntaxin-1 and SNAP-25. How Syt1 triggers release has been unclear, partly because elucidating high-resolution structures of Syt1-SNARE complexes has been challenging. An NMR approach based on lanthanide-induced pseudocontact shifts now reveals a dynamic binding mode in which basic residues in the concave side of the Syt1 C2B-domain ß-sandwich interact with a polyacidic region of the SNARE complex formed by syntaxin-1 and SNAP-25. The physiological relevance of this dynamic structural model is supported by mutations in basic residues of Syt1 that markedly impair SNARE-complex binding in vitro and Syt1 function in neurons. Mutations with milder effects on binding have correspondingly milder effects on Syt1 function. Our results support a model whereby dynamic interaction facilitates cooperation between Syt1 and the SNAREs in inducing membrane fusion.


Asunto(s)
Proteínas SNARE/metabolismo , Sinaptotagmina I/metabolismo , Animales , Células Cultivadas , Humanos , Ratones Endogámicos C57BL , Modelos Moleculares , Neuronas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas SNARE/química , Sinaptotagmina I/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda