Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Mol Phylogenet Evol ; 199: 108161, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079595

RESUMEN

The Salicaceae includes approximately 54 genera and over 1,400 species with a cosmopolitan distribution. Members of the family are well-known for their diverse secondary plant metabolites, and they play crucial roles in tropical and temperate forest ecosystems. Phylogenetic reconstruction of the Salicaceae has been historically challenging due to the limitations of molecular markers and the extensive history of hybridization and polyploidy within the family. Our study employs whole-genome sequencing of 74 species to generate an extensive phylogeny of the Salicaceae. We generated two RAD-Seq enriched whole-genome sequence datasets and extracted two additional gene sets corresponding to the universal Angiosperms353 and Salicaceae-specific targeted-capture arrays. We reconstructed maximum likelihood-based molecular phylogenies using supermatrix and coalescent-based supertree approaches. Our fossil-calibrated phylogeny estimates that the Salicaceae originated around 128 million years ago and unravels the complex taxonomic relationships within the family. Our findings confirm the non-monophyly of the subgenus Salix s.l. and further support the merging of subgenera Chamaetia and Vetrix, both of which exhibit intricate patterns within and among different sections. Overall, our study not only enhances our understanding of the evolution of the Salicaceae, but also provides valuable insights into the complex relationships within the family.


Asunto(s)
Filogenia , Salicaceae , Salicaceae/genética , Salicaceae/clasificación , Salix/genética , Salix/clasificación , Genoma de Planta , Evolución Molecular , Evolución Biológica , Funciones de Verosimilitud
2.
Am J Bot ; 111(7): e16361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38924532

RESUMEN

PREMISE: The huge diversity of Salix subgenus Chamaetia/Vetrix clade in North America and the lack of phylogenetic resolution within this clade has presented a difficult but fascinating challenge for taxonomists to resolve. Here we tested the existing taxonomic classification with molecular tools. METHODS: In this study, 132 samples representing 46 species from 22 described sections of shrub willows from the United States and Canada were analyzed and combined with 67 samples from Eurasia. The ploidy levels of the samples were determined using flow cytometry and nQuire. Sequences were produced using a RAD sequencing approach and subsequently analyzed with ipyrad, then used for phylogenetic reconstructions (RAxML, SplitsTree), dating analyses (BEAST, SNAPPER), and character evolution analyses of 14 selected morphological traits (Mesquite). RESULTS: The RAD sequencing approach allowed the production of a well-resolved phylogeny of shrub willows. The resulting tree showed an exclusively North American (NA) clade in sister position to a Eurasian clade, which included some North American endemics. The NA clade began to diversify in the Miocene. Polyploid species appeared in each observed clade. Character evolution analyses revealed that adaptive traits such as habit and adaxial nectaries evolved multiple times independently. CONCLUSIONS: The diversity in shrub willows was shaped by an evolutionary radiation in North America. Most species were monophyletic, but the existing sectional classification could not be supported by molecular data. Nevertheless, monophyletic lineages share several morphological characters, which might be useful in the revision of the taxonomic classification of shrub willows.


Asunto(s)
Filogenia , Salix , Salix/anatomía & histología , Salix/clasificación , Salix/genética , Evolución Biológica , América del Norte , Canadá , Estados Unidos
3.
Oecologia ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829402

RESUMEN

Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.

4.
J Chem Ecol ; 50(5-6): 250-261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38270732

RESUMEN

To what extent particular plant defences against herbivorous insects are constitutive or inducible will depend on the costs and benefits in their neighbourhood. Some defensive chemicals in leaves are thought to be costly and hard to produce rapidly, while others, including volatile organic compounds that attract natural enemies, might be cheaper and can be released rapidly. When surrounding tree species are more closely related, trees can face an increased abundance of both specialist herbivores and their parasitoids, potentially increasing the benefits of constitutive and inducible defences. To test if oaks (Quercus robur) respond more to herbivore attacks with volatile emission than with changes in leaf phenolic chemistry and carbon to nitrogen ratio (C: N), and whether oaks respond to the neighbouring tree species, we performed an experiment in a forest in Poland. Oak saplings were placed in neighbourhoods dominated by oak, beech, or pine trees, and half of them were treated with the phytohormone methyl jasmonate (elicitor of anti-herbivore responses). Oaks responded to the treatment by emitting a different volatile blend within 24 h, while leaf phenolic chemistry and C: N remained largely unaffected after 16 days and multiple treatments. Leaf phenolics were subtly affected by the neighbouring trees with elevated flavan-3-ols concentrations in pine-dominated plots. Our results suggest that these oaks rely on phenols as a constitutive defence and when attacked emit volatiles to attract natural enemies. Further studies might determine if the small effect of the neighbourhood on leaf phenolics is a response to different levels of shading, or if oaks use volatile cues to assess the composition of their neighbourhood.


Asunto(s)
Flavonoides , Herbivoria , Hojas de la Planta , Quercus , Compuestos Orgánicos Volátiles , Quercus/química , Quercus/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Flavonoides/metabolismo , Flavonoides/análisis , Flavonoides/química , Animales , Acetatos , Oxilipinas/metabolismo , Oxilipinas/química , Ciclopentanos/metabolismo , Ciclopentanos/química , Nitrógeno/metabolismo , Carbono/metabolismo , Carbono/química
7.
Phytochemistry ; : 114249, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39155032

RESUMEN

Short rotation coppices (SRCs) represent an important source of biomass. Since they are grown in various mixtures, SRCs represent an excellent opportunity for assessing the effects of local plant neighbourhoods on their performance. We used a common garden experiment consisting of plots that varied in genotype diversity of SRC willows to test for the effects of chemical traits of individual plants and chemical variation in the plots where they grew on insect herbivory. We also explored whether the composition of willows planted in a plot affected their chemistry. To do this, we performed untargeted metabolomics and quantified various chemical traits related to the total set of metabolites we detected, flavonoids, and salicinoids in four willow genotypes. We measured the leaf herbivory that the plants suffered. The genotypes differed in most chemical traits, yet we found only limited effects of individual traits on herbivory damage. Instead, herbivory damage was positively correlated with structural variation in salicinoids in a plot. When analysing the effects of plot chemical variation on herbivory damage separately for each genotype, we found both positive and negative correlations between the two, suggesting both associational resistance and susceptibility. Finally, we also observed a significant effect of the interaction between genotype and plot composition on structural variation in plant chemistry. Overall, our results suggest that high chemical variation in mixed willow SRCs does not necessarily lower the herbivory damage, possibly due to spillover effects of insect herbivores among genotypes. Our results also show that different genotypes respond differently to plot composition in terms of herbivory damage and chemical composition, which may affect their suitability for growing in mixed stands.

8.
Ecol Evol ; 14(2): e10973, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343568

RESUMEN

Polyphagous insect herbivores feed on multiple host-plant species and face a highly variable chemical landscape. Comparative studies of polyphagous herbivore metabolism across a range of plants is an ideal approach for exploring how intra- and interspecific chemical variation shapes species interactions. We used polyphagous caterpillars of Lymantria mathura (Erebidae, Lepidoptera) to explore mechanisms that may contribute to its ability to feed on various hosts. We focused on intraspecific variation in polyphenol metabolism, the fates of individual polyphenols, and the role of previous feeding experience on polyphenol metabolism and leaf consumption. We collected the caterpillars from Acer amoenum (Sapindaceae), Carpinus cordata (Betulaceae), and Quercus crispula (Fagaceae). We first fed the larvae with the leaves of their original host and characterized the polyphenol profiles in leaves and frass. We then transferred a subset of larvae to a different host species and quantified how host shifting affected their leaf consumption and polyphenol metabolism. There was high intraspecific variation in frass composition, even among caterpillars fed with one host. While polyphenols had various fates when ingested by the caterpillars, most of them were passively excreted. When we transferred the caterpillars to a new host, their previous experience influenced how they metabolized polyphenols. The one-host larvae metabolized a larger quantity of ingested polyphenols than two-host caterpillars. Some of these metabolites could have been sequestered, others were probably activated in the gut. One-host caterpillars retained more of the ingested leaf biomass than transferred caterpillars. The pronounced intraspecific variation in polyphenol metabolism, an ability to excrete ingested metabolites and potential dietary habituation are factors that may contribute to the ability of L. mathura to feed across multiple hosts. Further comparative studies can help identify if these mechanisms are related to differential host-choice and response to host-plant traits in specialist and generalist insect herbivores.

9.
Phytochemistry ; 226: 114222, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047854

RESUMEN

Chemical variation is a critical aspect affecting performance among co-occurring plants. High chemical variation in metabolites with direct effects on insect herbivores supports chemical niche partitioning, and it can reduce the number of herbivores shared by co-occurring plant species. In contrast, low intraspecific variation in metabolites with indirect effects, such as induced volatile organic compounds (VOCs), may improve the attraction of specialist predators or parasitoids as they show high specificity to insect herbivores. We explored whether induced chemical variation following herbivory by various insect herbivores differs between VOCs vs. secondary non-volatile metabolites (non-VOCs) and salicinoids with direct effects on herbivores in six closely related willow species. Willow species identity explained most variation in VOCs (18.4%), secondary non-VOCs (41.1%) and salicinoids (60.7%). The variation explained by the independent effect of the herbivore treatment was higher in VOCs (2.8%) compared to secondary non-VOCs (0.5%) and salicinoids (0.5%). At the level of individual VOCs, willow species formed groups, as some responded similarly to the same herbivores. Most non-VOCs and salicinoids were upregulated by sap-suckers compared to other herbivore treatments and control across the willow species. In contrast, induced responses in non-VOCs and salicinoids to other herbivores largely differed between the willows. Our results suggest that induced responses broadly differ between various types of chemical defences, with VOCs and non-VOCs showing different levels of specificity and similarity across plant species. This may further contribute to flexible plant responses to herbivory and affect how closely related plants share or partition their chemical niches.


Asunto(s)
Herbivoria , Salix , Compuestos Orgánicos Volátiles , Salix/química , Salix/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/química , Compuestos Orgánicos Volátiles/análisis , Animales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda