Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(14): e2114985119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35357970

RESUMEN

Dystonia is a debilitating disease with few treatment options. One effective option is deep brain stimulation (DBS) to the internal pallidum. While cervical and generalized forms of isolated dystonia have been targeted with a common approach to the posterior third of the nucleus, large-scale investigations regarding optimal stimulation sites and potential network effects have not been carried out. Here, we retrospectively studied clinical results following DBS for cervical and generalized dystonia in a multicenter cohort of 80 patients. We model DBS electrode placement based on pre- and postoperative imaging and introduce an approach to map optimal stimulation sites to anatomical space. Second, we investigate which tracts account for optimal clinical improvements, when modulated. Third, we investigate distributed stimulation effects on a whole-brain functional connectome level. Our results show marked differences of optimal stimulation sites that map to the somatotopic structure of the internal pallidum. While modulation of the striatopallidofugal axis of the basal ganglia accounted for optimal treatment of cervical dystonia, modulation of pallidothalamic bundles did so in generalized dystonia. Finally, we show a common multisynaptic network substrate for both phenotypes in the form of connectivity to the cerebellum and somatomotor cortex. Our results suggest a brief divergence of optimal stimulation networks for cervical vs. generalized dystonia within the pallidothalamic loop that merge again on a thalamo-cortical level and share a common whole-brain network.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Distónicos , Tortícolis , Estimulación Encefálica Profunda/métodos , Trastornos Distónicos/terapia , Globo Pálido , Humanos , Tálamo , Tortícolis/terapia , Resultado del Tratamiento
2.
Neurobiol Dis ; 194: 106462, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442845

RESUMEN

DYT-TOR1A (DYT1) dystonia, characterized by reduced penetrance and suspected environmental triggers, is explored using a "second hit" DYT-TOR1A rat model. We aim to investigate the biological mechanisms driving the conversion into a dystonic phenotype, focusing on the striatum's role in dystonia pathophysiology. Sciatic nerve crush injury was induced in ∆ETorA rats, lacking spontaneous motor abnormalities, and wild-type (wt) rats. Twelve weeks post-injury, unbiased RNA-sequencing was performed on the striatum to identify differentially expressed genes (DEGs) and pathways. Fenofibrate, a PPARα agonist, was introduced to assess its effects on gene expression. 18F-FDG autoradiography explored metabolic alterations in brain networks. Low transcriptomic variability existed between naïve wt and ∆ETorA rats (17 DEGs). Sciatic nerve injury significantly impacted ∆ETorA rats (1009 DEGs) compared to wt rats (216 DEGs). Pathway analyses revealed disruptions in energy metabolism, specifically in fatty acid ß-oxidation and glucose metabolism. Fenofibrate induced gene expression changes in wt rats but failed in ∆ETorA rats. Fenofibrate increased dystonia-like movements in wt rats but reduced them in ∆ETorA rats. 18F-FDG autoradiography indicated modified glucose metabolism in motor and somatosensory cortices and striatum in both ∆ETorA and wt rats post-injury. Our findings highlight perturbed energy metabolism pathways in DYT-TOR1A dystonia, emphasizing compromised PPARα agonist efficacy in the striatum. Furthermore, we identify impaired glucose metabolism in the brain network, suggesting a potential shift in energy substrate utilization in dystonic DYT-TOR1A rats. These results contribute to understanding the pathophysiology and potential therapeutic targets for DYT-TOR1A dystonia.


Asunto(s)
Distonía , Trastornos Distónicos , Fenofibrato , Ratas , Animales , Distonía/genética , Distonía/metabolismo , Roedores/metabolismo , Fluorodesoxiglucosa F18 , PPAR alfa/metabolismo , Trastornos Distónicos/genética , Encéfalo/metabolismo , Metabolismo Energético , Glucosa
3.
Neurobiol Dis ; 193: 106453, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402912

RESUMEN

DYT-TOR1A dystonia is the most common monogenic dystonia characterized by involuntary muscle contractions and lack of therapeutic options. Despite some insights into its etiology, the disease's pathophysiology remains unclear. The reduced penetrance of about 30% suggests that extragenetic factors are needed to develop a dystonic phenotype. In order to systematically investigate this hypothesis, we induced a sciatic nerve crush injury in a genetically predisposed DYT-TOR1A mouse model (DYT1KI) to evoke a dystonic phenotype. Subsequently, we employed a multi-omic approach to uncover novel pathophysiological pathways that might be responsible for this condition. Using an unbiased deep-learning-based characterization of the dystonic phenotype showed that nerve-injured DYT1KI animals exhibited significantly more dystonia-like movements (DLM) compared to naive DYT1KI animals. This finding was noticeable as early as two weeks following the surgical procedure. Furthermore, nerve-injured DYT1KI mice displayed significantly more DLM than nerve-injured wildtype (wt) animals starting at 6 weeks post injury. In the cerebellum of nerve-injured wt mice, multi-omic analysis pointed towards regulation in translation related processes. These observations were not made in the cerebellum of nerve-injured DYT1KI mice; instead, they were localized to the cortex and striatum. Our findings indicate a failed translational compensatory mechanisms in the cerebellum of phenotypic DYT1KI mice that exhibit DLM, while translation dysregulations in the cortex and striatum likely promotes the dystonic phenotype.


Asunto(s)
Distonía , Trastornos Distónicos , Ratones , Animales , Distonía/genética , Interacción Gen-Ambiente , Trastornos Distónicos/genética , Cuerpo Estriado/metabolismo , Predisposición Genética a la Enfermedad
4.
J Neurol Neurosurg Psychiatry ; 95(4): 300-308, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37758453

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the globus pallidus interna (GPi) is a highly efficacious treatment for cervical dystonia, but its mechanism of action is not fully understood. Here, we investigate the brain metabolic effects of GPi-DBS in cervical dystonia. METHODS: Eleven patients with GPi-DBS underwent brain 18F-fluorodeoxyglucose positron emission tomography imaging during stimulation on and off. Changes in regional brain glucose metabolism were investigated at the active contact location and across the whole brain. Changes in motor symptom severity were quantified using the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS), executive function using trail making test (TMT) and parkinsonism using Unified Parkinson's Disease Rating Scale (UPDRS). RESULTS: The mean (SD) best therapeutic response to DBS during the treatment was 81 (22)%. The TWSTRS score was 3.2 (3.9) points lower DBS on compared with off (p=0.02). At the stimulation site, stimulation was associated with increased metabolism, which correlated with DBS stimulation amplitude (r=0.70, p=0.03) but not with changes in motor symptom severity (p>0.9). In the whole brain analysis, stimulation increased metabolism in the GPi, subthalamic nucleus, putamen, primary sensorimotor cortex (PFDR<0.05). Acute improvement in TWSTRS correlated with metabolic activation in the sensorimotor cortex and overall treatment response in the supplementary motor area. Worsening of TMT-B score was associated with activation of the anterior cingulate cortex and parkinsonism with activation in the putamen. CONCLUSIONS: GPi-DBS increases metabolic activity at the stimulation site and sensorimotor network. The clinical benefit and adverse effects are mediated by modulation of specific networks.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Tortícolis , Humanos , Tortícolis/terapia , Activación Metabólica , Estimulación Encefálica Profunda/métodos , Núcleo Subtalámico/diagnóstico por imagen , Globo Pálido/diagnóstico por imagen , Globo Pálido/fisiología , Resultado del Tratamiento , Enfermedad de Parkinson/terapia
5.
Mov Disord ; 39(5): 778-787, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532269

RESUMEN

BACKGROUND: Re-emergent tremor is characterized as a continuation of resting tremor and is often highly therapy refractory. This study examines variations in brain activity and oscillatory responses between resting and re-emergent tremors in Parkinson's disease. METHODS: Forty patients with Parkinson's disease (25 males, mean age, 66.78 ± 5.03 years) and 40 age- and sex-matched healthy controls were included in the study. Electroencephalogram and electromyography signals were simultaneously recorded during resting and re-emergent tremors in levodopa on and off states for patients and mimicked by healthy controls. Brain activity was localized using the beamforming technique, and information flow between sources was estimated using effective connectivity. Cross-frequency coupling was used to assess neuronal oscillations between tremor frequency and canonical frequency oscillations. RESULTS: During levodopa on, differences in brain activity were observed in the premotor cortex and cerebellum in both the patient and control groups. However, Parkinson's disease patients also exhibited additional activity in the primary sensorimotor cortex. On withdrawal of levodopa, different source patterns were observed in the supplementary motor area and basal ganglia area. Additionally, levodopa was found to suppress the strength of connectivity (P < 0.001) between the identified sources and influence the tremor frequency-related coupling, leading to a decrease in ß (P < 0.001) and an increase in γ frequency coupling (P < 0.001). CONCLUSIONS: Distinct variations in cortical-subcortical brain activity are evident in tremor phenotypes. The primary sensorimotor cortex plays a crucial role in the generation of re-emergent tremor. Moreover, oscillatory neuronal responses in pathological ß and prokinetic γ activity are specific to tremor phenotypes. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Electromiografía , Levodopa , Enfermedad de Parkinson , Temblor , Humanos , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Masculino , Femenino , Temblor/fisiopatología , Temblor/etiología , Persona de Mediana Edad , Anciano , Levodopa/uso terapéutico , Levodopa/farmacología , Ritmo Gamma/fisiología , Ritmo Gamma/efectos de los fármacos , Ritmo beta/fisiología , Ritmo beta/efectos de los fármacos , Electroencefalografía/métodos , Antiparkinsonianos/uso terapéutico
6.
Mov Disord ; 39(3): 526-538, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38214203

RESUMEN

BACKGROUND: Pathogenic variants in several genes have been linked to genetic forms of isolated or combined dystonia. The phenotypic and genetic spectrum and the frequency of pathogenic variants in these genes have not yet been fully elucidated, neither in patients with dystonia nor with other, sometimes co-occurring movement disorders such as Parkinson's disease (PD). OBJECTIVES: To screen >2000 patients with dystonia or PD for rare variants in known dystonia-causing genes. METHODS: We screened 1207 dystonia patients from Germany (DysTract consortium), Spain, and South Korea, and 1036 PD patients from Germany for pathogenic variants using a next-generation sequencing gene panel. The impact on DNA methylation of KMT2B variants was evaluated by analyzing the gene's characteristic episignature. RESULTS: We identified 171 carriers (109 with dystonia [9.0%]; 62 with PD [6.0%]) of 131 rare variants (minor allele frequency <0.005). A total of 52 patients (48 dystonia [4.0%]; four PD [0.4%, all with GCH1 variants]) carried 33 different (likely) pathogenic variants, of which 17 were not previously reported. Pathogenic biallelic variants in PRKRA were not found. Episignature analysis of 48 KMT2B variants revealed that only two of these should be considered (likely) pathogenic. CONCLUSION: This study confirms pathogenic variants in GCH1, GNAL, KMT2B, SGCE, THAP1, and TOR1A as relevant causes in dystonia and expands the mutational spectrum. Of note, likely pathogenic variants only in GCH1 were also found among PD patients. For DYT-KMT2B, the recently described episignature served as a reliable readout to determine the functional effect of newly identified variants. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Distonía , Trastornos Distónicos , Enfermedad de Parkinson , Humanos , Distonía/genética , Trastornos Distónicos/genética , Mutación/genética , Frecuencia de los Genes , Enfermedad de Parkinson/genética , Chaperonas Moleculares/genética , Proteínas de Unión al ADN/genética , Proteínas Reguladoras de la Apoptosis/genética
7.
Neurobiol Dis ; 179: 106056, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863527

RESUMEN

The relationship between genotype and phenotype in DYT-TOR1A dystonia as well as the associated motor circuit alterations are still insufficiently understood. DYT-TOR1A dystonia has a remarkably reduced penetrance of 20-30%, which has led to the second-hit hypothesis emphasizing an important role of extragenetic factors in the symptomatogenesis of TOR1A mutation carriers. To analyze whether recovery from a peripheral nerve injury can trigger a dystonic phenotype in asymptomatic hΔGAG3 mice, which overexpress human mutated torsinA, a sciatic nerve crush was applied. An observer-based scoring system as well as an unbiased deep-learning based characterization of the phenotype showed that recovery from a sciatic nerve crush leads to significantly more dystonia-like movements in hΔGAG3 animals compared to wildtype control animals, which persisted over the entire monitored period of 12 weeks. In the basal ganglia, the analysis of medium spiny neurons revealed a significantly reduced number of dendrites, dendrite length and number of spines in the naïve and nerve-crushed hΔGAG3 mice compared to both wildtype control groups indicative of an endophenotypical trait. The volume of striatal calretinin+ interneurons showed alterations in hΔGAG3 mice compared to the wt groups. Nerve-injury related changes were found for striatal ChAT+, parvalbumin+ and nNOS+ interneurons in both genotypes. The dopaminergic neurons of the substantia nigra remained unchanged in number across all groups, however, the cell volume was significantly increased in nerve-crushed hΔGAG3 mice compared to naïve hΔGAG3 mice and wildtype littermates. Moreover, in vivo microdialysis showed an increase of dopamine and its metabolites in the striatum comparing nerve-crushed hΔGAG3 mice to all other groups. The induction of a dystonia-like phenotype in genetically predisposed DYT-TOR1A mice highlights the importance of extragenetic factors in the symptomatogenesis of DYT-TOR1A dystonia. Our experimental approach allowed us to dissect microstructural and neurochemical abnormalities in the basal ganglia, which either reflected a genetic predisposition or endophenotype in DYT-TOR1A mice or a correlate of the induced dystonic phenotype. In particular, neurochemical and morphological changes of the nigrostriatal dopaminergic system were correlated with symptomatogenesis.


Asunto(s)
Distonía , Trastornos Distónicos , Traumatismos de los Nervios Periféricos , Animales , Humanos , Ratones , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Distonía/genética , Distonía/metabolismo , Trastornos Distónicos/genética , Endofenotipos , Chaperonas Moleculares/genética , Traumatismos de los Nervios Periféricos/metabolismo , Sustancia Negra/metabolismo
8.
J Neuroinflammation ; 20(1): 79, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36945016

RESUMEN

Neuroinflammation has been suggested as a pathogenetic mechanism contributing to Parkinson's disease (PD). However, anti-inflammatory treatment strategies have not yet been established as a therapeutic option for PD patients. We have used a human α-synuclein mouse model of progressive PD to examine the anti-inflammatory and neuroprotective effects of inflammasome inhibition on dopaminergic (DA) neurons in the substantia nigra (SN). As the NLRP3 (NOD-, LRR- and pyrin domain-containing 3)-inflammasome is a core interface for both adaptive and innate inflammation and is also highly druggable, we investigated the implications of its inhibition. Repeat administration of MCC950, an inhibitor of NLRP3, in a PD model with ongoing pathology reduced CD4+ and CD8+ T cell infiltration into the SN. Furthermore, the anti-inflammasome treatment mitigated microglial activation and modified the aggregation of α-synuclein protein in DA neurons. MCC950-treated mice showed significantly less neurodegeneration of DA neurons and a reduction in PD-related motor behavior. In summary, early inflammasome inhibition can reduce neuroinflammation and prevent DA cell death in an α-synuclein mouse model for progressive PD.


Asunto(s)
Inflamasomas , Enfermedad de Parkinson , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas , Enfermedades Neuroinflamatorias , Microglía/metabolismo , Ratones Endogámicos NOD , Sulfonamidas/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
9.
Ann Neurol ; 91(5): 585-601, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35148020

RESUMEN

OBJECTIVE: Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) effectively suppresses arm tremor. Uncontrolled studies suggest the posterior subthalamic area (PSA) may be superior. We compared the intra-individual efficacy of VIM- versus PSA-DBS on tremor suppression and arm function. METHODS: We performed a randomized, double-blind, crossover trial at Oslo University Hospital in patients (18-80 years) with isolated or combined action tremor affecting at least one arm. Four-contact DBS leads were implanted (bi- or unilaterally) with a trajectory to cover the VIM (upper two contacts) and PSA (lower two contacts). Patients were randomized (1:1 ratio) post-surgery to: Group 1, VIM-stimulation months 0-3 (period 1), then PSA-stimulation months 4-6 (period 2); Group 2, PSA-stimulation first, then VIM-stimulation. Primary endpoint was the difference in improvement from baseline to the end of the VIM- versus PSA-period in the sum of the dominant arm tremor scores of the Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS), items 5/6 + 10-14. RESULTS: Forty-five patients were randomized to Group 1 (n = 23) or 2 (n = 22). In the primary endpoint per-protocol analysis (mixed model, n = 40), mean difference in the sum FTMTRS score improvement for the dominant arm was -2.65 points (95% CI -4.33 to -0.97; p = 0.002). The difference in favour of PSA stimulation was highly significant in period 2, but not period 1. INTERPRETATION: Our randomized trial demonstrated that PSA stimulation provided superior tremor suppression compared with VIM stimulation. A period effect reducing tremor for up to three months in both groups was most likely attributed to a post-surgery stun effect. ANN NEUROL 2022;91:585-601.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Núcleo Subtalámico , Estimulación Encefálica Profunda/métodos , Temblor Esencial/terapia , Humanos , Masculino , Antígeno Prostático Específico , Núcleo Subtalámico/fisiología , Resultado del Tratamiento , Temblor/terapia
10.
Mov Disord ; 38(5): 717-731, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36959763

RESUMEN

Tremor is the most frequent human movement disorder, and its diagnosis is based on clinical assessment. Yet finding the accurate clinical diagnosis is not always straightforward. Fine-tuning of clinical diagnostic criteria over the past few decades, as well as device-based qualitative analysis, has resulted in incremental improvements to diagnostic accuracy. Accelerometric assessments are commonplace, enabling clinicians to capture high-resolution oscillatory properties of tremor, which recently have been the focus of various machine-learning (ML) studies. In this context, the application of ML models to accelerometric recordings provides the potential for less-biased classification and quantification of tremor disorders. However, if implemented incorrectly, ML can result in spurious or nongeneralizable results and misguided conclusions. This work summarizes and highlights recent developments in ML tools for tremor research, with a focus on supervised ML. We aim to highlight the opportunities and limitations of such approaches and provide future directions while simultaneously guiding the reader through the process of applying ML to analyze tremor data. We identify the need for the movement disorder community to take a more proactive role in the application of these novel analytical technologies, which so far have been predominantly pursued by the engineering and data analysis field. Ultimately, big-data approaches offer the possibility to identify generalizable patterns but warrant meaningful translation into clinical practice. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Trastornos del Movimiento , Temblor , Humanos , Temblor/diagnóstico , Trastornos del Movimiento/diagnóstico , Aprendizaje Automático
11.
Mov Disord ; 38(6): 1077-1082, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36750755

RESUMEN

BACKGROUND: Skin biopsy is a potential tool for the premortem confirmation of an α-synucleinopathy. OBJECTIVE: The aim was to assess the aggregation assay real-time quaking-induced conversion (RT-QuIC) of skin biopsy lysates to confirm isolated rapid eye movement sleep behavior disorder (iRBD) as an α-synucleinopathy. METHODS: Skin biopsies of patients with iRBD, Parkinson's disease (PD), and controls were analyzed using RT-QuIC and immunohistochemical detection of phospho-α-synuclein. RESULTS: α-Synuclein aggregation was detected in 97.4% of iRBD patients (78.4% of iRBD biopsies), 87.2% of PD patients (70% of PD biopsies), and 13% of controls (7.9% of control biopsies), with a higher seeding activity in iRBD compared to PD. RT-QuIC was more sensitive but less specific than immunohistochemistry. CONCLUSIONS: Dermal RT-QuIC is a sensitive method to detect α-synuclein aggregation in iRBD, and high seeding activity may indicate a strong involvement of dermal nerve fibers in these patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Humanos , alfa-Sinucleína , Sinucleinopatías/diagnóstico , Trastorno de la Conducta del Sueño REM/diagnóstico , Trastorno de la Conducta del Sueño REM/patología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Biopsia
12.
Mov Disord ; 38(9): 1736-1742, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358761

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) has been increasingly used in the management of dyskinetic cerebral palsy (DCP). Data on long-term effects and the safety profile are rare. OBJECTIVES: We assessed the efficacy and safety of pallidal DBS in pediatric patients with DCP. METHODS: The STIM-CP trial was a prospective, single-arm, multicenter study in which patients from the parental trial agreed to be followed-up for up to 36 months. Assessments included motor and non-motor domains. RESULTS: Of the 16 patients included initially, 14 (mean inclusion age 14 years) were assessed. There was a significant change in the (blinded) ratings of the total Dyskinesia Impairment Scale at 36 months. Twelve serious adverse events (possibly) related to treatment were documented. CONCLUSION: DBS significantly improved dyskinesia, but other outcome parameters did not change significantly. Investigations of larger homogeneous cohorts are needed to further ascertain the impact of DBS and guide treatment decisions in DCP. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Parálisis Cerebral , Estimulación Encefálica Profunda , Discinesias , Trastornos del Movimiento , Humanos , Niño , Adolescente , Parálisis Cerebral/terapia , Estudios de Seguimiento , Estudios Prospectivos , Discinesias/etiología , Discinesias/terapia , Globo Pálido , Trastornos del Movimiento/terapia , Resultado del Tratamiento
13.
Mov Disord ; 38(2): 212-222, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461899

RESUMEN

BACKGROUND: The EARLYSTIM trial demonstrated for Parkinson's disease patients with early motor complications that deep brain stimulation of the subthalamic nucleus (STN-DBS) and best medical treatment (BMT) was superior to BMT alone. OBJECTIVE: This prospective, ancillary study on EARLYSTIM compared changes in blinded speech intelligibility assessment between STN-DBS and BMT over 2 years, and secondary outcomes included non-speech oral movements (maximum phonation time [MPT], oral diadochokinesis), physician- and patient-reported assessments. METHODS: STN-DBS (n = 102) and BMT (n = 99) groups underwent assessments on/off medication at baseline and 24 months (in four conditions: on/off medication, ON/OFF stimulation-for STN-DBS). Words and sentences were randomly presented to blinded listeners, and speech intelligibility rate was measured. Statistical analyses compared changes between the STN-DBS and BMT groups from baseline to 24 months. RESULTS: Over the 2-year period, changes in speech intelligibility and MPT, as well as patient-reported outcomes, were not different between groups, either off or on medication or OFF or ON stimulation, but most outcomes showed a nonsignificant trend toward worsening in both groups. Change in oral diadochokinesis was significantly different between STN-DBS and BMT groups, on medication and OFF STN-DBS, with patients in the STN-DBS group performing slightly worse than patients under BMT only. A signal for clinical worsening with STN-DBS was found for the individual speech item of the Unified Parkinson's Disease Rating Scale, Part III. CONCLUSION: At this early stage of the patients' disease, STN-DBS did not result in a consistent deterioration in blinded speech intelligibility assessment and patient-reported communication, as observed in studies of advanced Parkinson's Disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/complicaciones , Estudios Prospectivos , Núcleo Subtalámico/fisiología , Movimiento , Inteligibilidad del Habla/fisiología , Estimulación Encefálica Profunda/métodos , Resultado del Tratamiento
14.
Brain ; 145(4): 1410-1421, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35037938

RESUMEN

Deep brain stimulation is an effective treatment for Parkinson's disease but can be complicated by side-effects such as cognitive decline. There is often a delay before this side-effect is apparent and the mechanism is unknown, making it difficult to identify patients at risk or select appropriate deep brain stimulation settings. Here, we test whether connectivity between the stimulation site and other brain regions is associated with cognitive decline following deep brain stimulation. First, we studied a unique patient cohort with cognitive decline following subthalamic deep brain stimulation for Parkinson's disease (n = 10) where reprogramming relieved the side-effect without loss of motor benefit. Using resting state functional connectivity data from a large normative cohort (n = 1000), we computed connectivity between each stimulation site and the subiculum, an a priori brain region functionally connected to brain lesions causing memory impairment. Connectivity between deep brain stimulation sites and this same subiculum region was significantly associated with deep brain stimulation induced cognitive decline (P < 0.02). We next performed a data-driven analysis to identify connections most associated with deep brain stimulation induced cognitive decline. Deep brain stimulation sites causing cognitive decline (versus those that did not) were more connected to the anterior cingulate, caudate nucleus, hippocampus, and cognitive regions of the cerebellum (PFWE < 0.05). The spatial topography of this deep brain stimulation-based circuit for cognitive decline aligned with an a priori lesion-based circuit for memory impairment (P = 0.017). To begin translating these results into a clinical tool that might be used for deep brain stimulation programming, we generated a 'heat map' in which the intensity of each voxel reflects the connectivity to our cognitive decline circuit. We then validated this heat map using an independent dataset of Parkinson's disease patients in which cognitive performance was measured following subthalamic deep brain stimulation (n = 33). Intersection of deep brain stimulation sites with our heat map was correlated with changes in the Mattis dementia rating scale 1 year after lead implantation (r = 0.39; P = 0.028). Finally, to illustrate how this heat map might be used in clinical practice, we present a case that was flagged as 'high risk' for cognitive decline based on intersection of the patient's deep brain stimulation site with our heat map. This patient had indeed experienced cognitive decline and our heat map was used to select alternative deep brain stimulation parameters. At 14 days follow-up the patient's cognition improved without loss of motor benefit. These results lend insight into the mechanism of deep brain stimulation induced cognitive decline and suggest that connectivity-based heat maps may help identify patients at risk and who might benefit from deep brain stimulation reprogramming.


Asunto(s)
Disfunción Cognitiva , Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Encéfalo , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Estimulación Encefálica Profunda/efectos adversos , Estimulación Encefálica Profunda/métodos , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia
15.
Brain ; 145(1): 251-262, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34453827

RESUMEN

The subthalamic nucleus and internal pallidum are main target sites for deep brain stimulation in Parkinson's disease. Multiple trials that investigated subthalamic versus pallidal stimulation were unable to settle on a definitive optimal target between the two. One reason could be that the effect is mediated via a common functional network. To test this hypothesis, we calculated connectivity profiles seeding from deep brain stimulation electrodes in 94 patients that underwent subthalamic and 28 patients with pallidal treatment based on a normative connectome atlas calculated from 1000 healthy subjects. In each cohort, we calculated connectivity profiles that were associated with optimal clinical improvements. The two maps showed striking similarity and were able to cross-predict outcomes in the respective other cohort (R = 0.37 at P < 0.001; R = 0.34 at P = 0.032). Next, we calculated an agreement map, which retained regions common to both target sites. Crucially, this map was able to explain an additional amount of variance in clinical improvements of either cohort when compared to the maps calculated on each cohort alone. Finally, we tested profiles and predictive utility of connectivity maps calculated from different motor symptom subscores with a specific focus on bradykinesia and rigidity. While our study is based on retrospective data and indirect connectivity metrics, it may deliver empirical data to support the hypothesis of a largely overlapping network associated with effective deep brain stimulation in Parkinson's disease irrespective of the specific target.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Globo Pálido , Humanos , Enfermedad de Parkinson/terapia , Estudios Retrospectivos
16.
Stroke ; 53(9): 2876-2886, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35521958

RESUMEN

BACKGROUND: In patients with intracerebral hemorrhage (ICH), the presence of intraventricular hemorrhage constitutes a promising therapeutic target. Intraventricular fibrinolysis (IVF) reduces mortality, yet impact on functional disability remains unclear. Thus, we aimed to determine the influence of IVF on functional outcomes. METHODS: This individual participant data meta-analysis pooled 1501 patients from 2 randomized trials and 7 observational studies enrolled during 2004 to 2015. We compared IVF versus standard of care (including placebo) in patients treated with external ventricular drainage due to acute hydrocephalus caused by ICH with intraventricular hemorrhage. The primary outcome was functional disability evaluated by the modified Rankin Scale (mRS; range: 0-6, lower scores indicating less disability) at 6 months, dichotomized into mRS score: 0 to 3 versus mRS: 4 to 6. Secondary outcomes included ordinal-shift analysis, all-cause mortality, and intracranial adverse events. Confounding and bias were adjusted by random effects and doubly robust models to calculate odds ratios and absolute treatment effects (ATE). RESULTS: Comparing treatment of 596 with IVF to 905 with standard of care resulted in an ATE to achieve the primary outcome of 9.3% (95% CI, 4.4-14.1). IVF treatment showed a significant shift towards improved outcome across the entire range of mRS estimates, common odds ratio, 1.75 (95% CI, 1.39-2.17), reduced mortality, odds ratio, 0.47 (95% CI, 0.35-0.64), without increased adverse events, absolute difference, 1.0% (95% CI, -2.7 to 4.8). Exploratory analyses provided that early IVF treatment (≤48 hours) after symptom onset was associated with an ATE, 15.2% (95% CI, 8.6-21.8) to achieve the primary outcome. CONCLUSIONS: As compared to standard of care, the administration of IVF in patients with acute hydrocephalus caused by intracerebral and intraventricular hemorrhage was significantly associated with improved functional outcome at 6 months. The treatment effect was linked to an early time window <48 hours, specifying a target population for future trials.


Asunto(s)
Fibrinólisis , Hidrocefalia , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/tratamiento farmacológico , Drenaje/métodos , Fibrinolíticos , Humanos , Estudios Observacionales como Asunto , Resultado del Tratamiento
17.
Neurobiol Dis ; 171: 105798, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35750147

RESUMEN

The pathogenesis of Parkinson's disease (PD) is closely interwoven with the process of aging. Moreover, increasing evidence from human postmortem studies and from animal models for PD point towards inflammation as an additional factor in disease development. We here assessed the impact of aging and inflammation on dopaminergic neurodegeneration in the hm2α-SYN-39 mouse model of PD that carries the human, A30P/A53T double-mutated α-synuclein gene. At 2-3 months of age, no significant differences were observed comparing dopaminergic neuron numbers of the substantia nigra (SN) pars compacta of hm2α-SYN-39 mice with wildtype controls. At an age of 16-17 months, however, hm2α-SYN-39 mice revealed a significant loss of dopaminergic SN neurons, of dopaminergic terminals in the striatum as well as a reduction of striatal dopamine levels compared to young, 2-3 months transgenic mice and compared to 16-17 months old wildtype littermates. A significant age-related correlation of infiltrating CD4+ and CD8+ T cell numbers with dopaminergic terminal loss of the striatum was found in hm2α-SYN-39 mice, but not in wildtype controls. In the striatum of 16-17 months old wildtype mice a slightly elevated CD8+ T cell count and CD11b+ microglia cell count was observed compared to younger aged mice. Additional analyses of neuroinflammation in the nigrostriatal tract of wildtype mice did not yield any significant age-dependent changes of CD4+, CD8+ T cell and B220+ B cell numbers, respectively. In contrast, a significant age-dependent increase of CD8+ T cells, GFAP+ astrocytes as well as a pronounced increase of CD11b+ microglia numbers were observed in the SN of hm2α-SYN-39 mice pointing towards a neuroinflammatory processes in this genetic mouse model for PD. The findings in the hm2α-SYN-39 mouse model strengthen the evidence that T cell and glial cell responses are involved in the age-related neurodegeneration in PD. The slow and age-dependent progression of neurodegeneration and neuroinflammation in the hm2α-SYN-39 PD rodent model underlines its translational value and makes it suitable for studying anti-inflammatory therapies.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Modelos Animales de Enfermedad , Dopamina , Neuronas Dopaminérgicas/metabolismo , Humanos , Lactante , Inflamación/patología , Ratones , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
18.
J Neuroinflammation ; 19(1): 319, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587195

RESUMEN

BACKGROUND: Regulatory CD4+CD25+FoxP3+ T cells (Treg) are a subgroup of T lymphocytes involved in maintaining immune balance. Disturbance of Treg number and impaired suppressive function of Treg correlate with Parkinson's disease severity. Superagonistic anti-CD28 monoclonal antibodies (CD28SA) activate Treg and cause their expansion to create an anti-inflammatory environment. METHODS: Using the AAV1/2-A53T-α-synuclein Parkinson's disease mouse model that overexpresses the pathogenic human A53T-α-synuclein (hαSyn) variant in dopaminergic neurons of the substantia nigra, we assessed the neuroprotective and disease-modifying efficacy of a single intraperitoneal dose of CD28SA given at an early disease stage. RESULTS: CD28SA led to Treg expansion 3 days after delivery in hαSyn Parkinson's disease mice. At this timepoint, an early pro-inflammation was observed in vehicle-treated hαSyn Parkinson's disease mice with elevated percentages of CD8+CD69+ T cells in brain and increased levels of interleukin-2 (IL-2) in the cervical lymph nodes and spleen. These immune responses were suppressed in CD28SA-treated hαSyn Parkinson's disease mice. Early treatment with CD28SA attenuated dopaminergic neurodegeneration in the SN of hαSyn Parkinson's disease mice accompanied with reduced brain numbers of activated CD4+, CD8+ T cells and CD11b+ microglia observed at the late disease-stage 10 weeks after AAV injection. In contrast, a later treatment 4 weeks after AAV delivery failed to reduce dopaminergic neurodegeneration. CONCLUSIONS: Our data indicate that immune modulation by Treg expansion at a timepoint of overt inflammation is effective for treatment of hαSyn Parkinson's disease mice and suggest that the concept of early immune therapy could pose a disease-modifying option for Parkinson's disease patients.


Asunto(s)
Enfermedad de Parkinson , Ratones , Humanos , Animales , Enfermedad de Parkinson/patología , Linfocitos T Reguladores , alfa-Sinucleína/metabolismo , Linfocitos T CD8-positivos/metabolismo , Antígenos CD28 , Anticuerpos/farmacología , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo , Dopamina , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
19.
Ann Neurol ; 90(5): 699-710, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34235776

RESUMEN

In Parkinson's disease, both motor and neuropsychiatric complications unfold as a consequence of both incremental striatal dopaminergic denervation and intensifying long-term dopaminergic treatment. Together, this leads to 'dopaminergic sensitization' steadily increasing motor and behavioral responses to dopaminergic medication that result in the detrimental sequalae of long-term dopaminergic treatment. We review the clinical presentations of 'dopaminergic sensitization', including rebound off and dyskinesia in the motor domain, and neuropsychiatric fluctuations and behavioral addictions with impulse control disorders and dopamine dysregulation syndrome in the neuropsychiatric domain. We summarize state-of-the-art deep brain stimulation, and show that STN-DBS allows dopaminergic medication to be tapered, thus supporting dopaminergic desensitization. In this framework, we develop our integrated debatable viewpoint of "changing gears", that is we suggest rethinking earlier use of subthalamic nucleus deep brain stimulation, when the first clinical signs of dopaminergic motor or neuropsychiatric complications emerge over the steadily progressive disease course. In this sense, subthalamic deep brain stimulation may help reduce longitudinal motor and neuropsychiatric symptom expression - importantly, not by neuroprotection but by supporting dopaminergic desensitization through postoperative medication reduction. Therefore, we suggest considering STN-DBS early enough before patients encounter potentially irreversible psychosocial consequences of dopaminergic complications, but importantly not before a patient shows first clinical signs of dopaminergic complications. We propose to consider neuropsychiatric dopaminergic complications as a new inclusion criterion in addition to established motor criteria, but this concept will require validation in future clinical trials. ANN NEUROL 2021;90:699-710.


Asunto(s)
Dopaminérgicos/farmacología , Dopamina/metabolismo , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Estimulación Encefálica Profunda/métodos , Trastornos Disruptivos, del Control de Impulso y de la Conducta/fisiopatología , Humanos , Enfermedad de Parkinson/complicaciones , Núcleo Subtalámico/fisiología , Núcleo Subtalámico/fisiopatología , Resultado del Tratamiento
20.
Ann Neurol ; 89(3): 485-497, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33236446

RESUMEN

OBJECTIVE: The study was undertaken to identify a monogenic cause of early onset, generalized dystonia. METHODS: Methods consisted of genome-wide linkage analysis, exome and Sanger sequencing, clinical neurological examination, brain magnetic resonance imaging, and protein expression studies in skin fibroblasts from patients. RESULTS: We identified a heterozygous variant, c.388G>A, p.Gly130Arg, in the eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2) gene, segregating with early onset isolated generalized dystonia in 5 patients of a Taiwanese family. EIF2AK2 sequencing in 191 unrelated patients with unexplained dystonia yielded 2 unrelated Caucasian patients with an identical heterozygous c.388G>A, p.Gly130Arg variant, occurring de novo in one case, another patient carrying a different heterozygous variant, c.413G>C, p.Gly138Ala, and one last patient, born from consanguineous parents, carrying a third, homozygous variant c.95A>C, p.Asn32Thr. These 3 missense variants are absent from gnomAD, and are located in functional domains of the encoded protein. In 3 patients, additional neurological manifestations were present, including intellectual disability and spasticity. EIF2AK2 encodes a kinase (protein kinase R [PKR]) that phosphorylates eukaryotic translation initiation factor 2 alpha (eIF2α), which orchestrates the cellular stress response. Our expression studies showed abnormally enhanced activation of the cellular stress response, monitored by PKR-mediated phosphorylation of eIF2α, in fibroblasts from patients with EIF2AK2 variants. Intriguingly, PKR can also be regulated by PRKRA (protein interferon-inducible double-stranded RNA-dependent protein kinase activator A), the product of another gene causing monogenic dystonia. INTERPRETATION: We identified EIF2AK2 variants implicated in early onset generalized dystonia, which can be dominantly or recessively inherited, or occur de novo. Our findings provide direct evidence for a key role of a dysfunctional eIF2α pathway in the pathogenesis of dystonia. ANN NEUROL 2021;89:485-497.


Asunto(s)
Trastornos Distónicos/genética , Fibroblastos/metabolismo , eIF-2 Quinasa/genética , Adolescente , Adulto , Edad de Inicio , Pueblo Asiatico , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Trastornos Distónicos/metabolismo , Trastornos Distónicos/fisiopatología , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Población Blanca , Secuenciación del Exoma , Adulto Joven , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda