RESUMEN
OBJECTIVE: We outline our vision for a 14 Tesla MR system. This comprises a novel whole-body magnet design utilizing high temperature superconductor; a console and associated electronic equipment; an optimized radiofrequency coil setup for proton measurement in the brain, which also has a local shim capability; and a high-performance gradient set. RESEARCH FIELDS: The 14 Tesla system can be considered a 'mesocope': a device capable of measuring on biologically relevant scales. In neuroscience the increased spatial resolution will anatomically resolve all layers of the cortex, cerebellum, subcortical structures, and inner nuclei. Spectroscopic imaging will simultaneously measure excitatory and inhibitory activity, characterizing the excitation/inhibition balance of neural circuits. In medical research (including brain disorders) we will visualize fine-grained patterns of structural abnormalities and relate these changes to functional and molecular changes. The significantly increased spectral resolution will make it possible to detect (dynamic changes in) individual metabolites associated with pathological pathways including molecular interactions and dynamic disease processes. CONCLUSIONS: The 14 Tesla system will offer new perspectives in neuroscience and fundamental research. We anticipate that this initiative will usher in a new era of ultra-high-field MR.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cabeza , Imagen de Difusión por Resonancia Magnética , Ondas de RadioRESUMEN
To explore the use of five meandering dipole antennas in a multi-transmit setup, combined with a high density receive array for breast imaging at 7 T for improved penetration depth and more homogeneous B1 field. Five meandering dipole antennas and 30 receiver loops were positioned on two cups around the breasts. Finite difference time domain simulations were performed to evaluate RF safety limits of the transmit setup. Scattering parameters of the transmit setup and coupling between the antennas and the detuned loops were measured. In vivo parallel imaging performance was investigated for various acceleration factors. After RF shimming, a B1 map, a T1 -weighted image, and a T2 -weighted image were acquired to assess B1 efficiency, uniformity in contrast weighting, and imaging performance in clinical applications. The maximum achievable local SAR10g value was 7.0 W/kg for 5 × 1 W accepted power. The dipoles were tuned and matched to a maximum reflection of -11.8 dB, and a maximum inter-element coupling of -14.2 dB. The maximum coupling between the antennas and the receive loops was -18.2 dB and the mean noise correlation for the 30 receive loops 7.83 ± 8.69%. In vivo measurements showed an increased field of view, which reached to the axilla, and a high transmit efficiency. This coil enabled the acquisition of T1 -weighted images with a high spatial resolution of 0.7 mm3 isotropic and T2 -weighted spin echo images with uniformly weighted contrast.
Asunto(s)
Mama/diagnóstico por imagen , Imagen por Resonancia Magnética , Simulación por Computador , Femenino , HumanosRESUMEN
BACKGROUND: In MRI, the signal-to-noise ratio (SNR) theoretically increases with B0 field strength. However, because of attenuation of the radiofrequency (RF) fields at 7T, it is not certain if this SNR gain can be realized for prostate imaging. PURPOSE/HYPOTHESIS: To investigate the SNR gain in prostate imaging at 7T as compared with 3T. It is expected that SNR will improve for prostate imaging at 7T compared with 3T. STUDY TYPE: Prospective. SUBJECTS: Four healthy volunteers and one prostate cancer patient. FIELD STRENGTH/SEQUENCE: All subjects were scanned at 3T and at 7T using optimal coil setups for both field strengths. For all volunteers, proton density-weighted images were acquired for SNR analysis and actual flip angle imaging (AFI) B1+| maps were acquired for correction of measured SNR values. In the patient, a T2 -weighted (T2 w) image was acquired at 3T and at 7T. ASSESSMENT: SNR was calculated in the prostate region for all volunteers. SNR was normalized for flip angle, receiver bandwidth, and voxel volume. SNR was also calculated for different sensitivity encoding (SENSE) acceleration factors. STATISTICAL TESTING: SNR values are represented as the arithmetic mean of SNR values in the prostate. Estimated SNR in the T2 w image is calculated as the arithmetic mean of the signal intensity (SI) divided by the standard deviation of the SI in a specified zone. Tumor-to-tissue contrast is calculated as (SItumor +SIzone )/( SItumor -SIzone ). RESULTS: An increase in SNR ranging from 1.7-fold to 2.8-fold was measured in the prostate at 7T in comparison to 3T for four volunteers. At 7T, it is possible to achieve a 4-fold SENSE acceleration in the left-right direction with similar SNR to a nonaccelerated 3T image. T2 w imaging was done at 3T and 7T in one patient, where improved tumor-to-tissue contrast was demonstrated at 7T. DATA CONCLUSION: SNR improves for prostate imaging at 7T as compared with 3T. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1446-1455.
Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Relación Señal-Ruido , Adulto , Humanos , Masculino , Estudios Prospectivos , Próstata/diagnóstico por imagenRESUMEN
PURPOSE: To design a forward view antenna for prostate imaging at 7 T, which is placed between the legs of the subject in addition to a dipole array. MATERIALS AND METHODS: The forward view antenna is realized by placing a cross-dipole antenna at the end of a small rectangular waveguide. Quadrature drive of the cross-dipole can excite a circularly polarized wave propagating along the axial direction to and from the prostate region. Functioning of the forward view antenna is validated by comparing measurements and simulations. Antenna performance is evaluated by numerical simulations and measurements at 7 T. RESULTS: Simulations of B1+ on a phantom are in good correspondence with measurements. Simulations on a human model indicate that the signal-to-noise ratio (SNR), specific absorption rate (SAR) efficiency and SAR increase when adding the forward view antenna to a previously published dipole array. The SNR increases by up to 18% when adding the forward view antenna as a receive antenna to an eight-channel dipole array in vivo. CONCLUSIONS: A design for a forward view antenna is presented and evaluated. SNR improvements up to 18% are demonstrated when adding the forward view antenna to a dipole array.
Asunto(s)
Imagen por Resonancia Magnética , Próstata/diagnóstico por imagen , Simulación por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Fantasmas de Imagen , Relación Señal-RuidoRESUMEN
OBJECTIVE: To demonstrate imaging performance for cardiac MR imaging at 7 T using a coil array of 8 transmit/receive dipole antennas and 16 receive loops. MATERIALS AND METHODS: An 8-channel dipole array was extended by adding 16 receive-only loops. Average power constraints were determined by electromagnetic simulations. Cine imaging was performed on eight healthy subjects. Geometrical factor (g-factor) maps were calculated to assess acceleration performance. Signal-to-noise ratio (SNR)-scaled images were reconstructed for different combinations of receive channels, to demonstrate the SNR benefits of combining loops and dipoles. RESULTS: The overall image quality of the cardiac functional images was rated a 2.6 on a 4-point scale by two experienced radiologists. Imaging results at different acceleration factors demonstrate that acceleration factors up to 6 could be obtained while keeping the average g-factor below 1.27. SNR maps demonstrate that combining loops and dipoles provides a more than 50% enhancement of the SNR in the heart, compared to a situation where only loops or dipoles are used. CONCLUSION: This work demonstrates the performance of a combined loop/dipole array for cardiac imaging at 7 T. With this array, acceleration factors of 6 are possible without increasing the average g-factor in the heart beyond 1.27. Combining loops and dipoles in receive mode enhances the SNR compared to receiving with loops or dipoles only.
Asunto(s)
Técnicas de Imagen Cardíaca/instrumentación , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética/instrumentación , Adulto , Técnicas de Imagen Cardíaca/métodos , Técnicas de Imagen Cardíaca/estadística & datos numéricos , Simulación por Computador , Fenómenos Electromagnéticos , Diseño de Equipo , Femenino , Voluntarios Sanos , Humanos , Aumento de la Imagen , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/estadística & datos numéricos , Imagen por Resonancia Cinemagnética/instrumentación , Imagen por Resonancia Cinemagnética/métodos , Imagen por Resonancia Cinemagnética/estadística & datos numéricos , Masculino , Fantasmas de Imagen , Relación Señal-Ruido , Adulto JovenRESUMEN
PURPOSE: Dipole antennas in ultrahigh field MRI have demonstrated advantages over more conventional designs. In this study, the fractionated dipole antenna is presented: a dipole where the legs are split into segments that are interconnected by capacitors or inductors. METHODS: A parameter study has been performed on dipole antenna length using numerical simulations. A subsequent simulation study investigates the optimal intersegment capacitor/inductor value. The resulting optimal design has been constructed and compared to a previous design, the single-side adapted dipole (SSAD) by simulations and measurements. An array of eight elements has been constructed for prostate imaging on four subjects (body mass index 20-27.5) using 8 × 2 kW amplifiers. RESULTS: For prostate imaging at 7T, lowest peak local specific-absorption rate (SAR) levels are achieved if the antenna is 30 cm or longer. A fractionated dipole antenna design with inductors between segments has been chosen to achieve even lower SAR levels and more homogeneous receive sensitivities. CONCLUSION: With the new design, good quality prostate images are acquired. SAR levels are reduced by 41% to 63% in comparison to the SSAD. Coupling levels are moderate (average nearest neighbor: -14.6 dB) for each subject and prostate B1+ levels range from 12 to 18 µT.
Asunto(s)
Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Adulto , Simulación por Computador , Diseño de Equipo , Humanos , Masculino , Fantasmas de Imagen , Próstata/diagnóstico por imagen , Relación Señal-Ruido , Adulto JovenRESUMEN
Chronic intake of high amounts of fructose has been linked to the development of metabolic disorders, which has been attributed to the almost complete clearance of fructose by the liver. However, direct measurement of hepatic fructose uptake is complicated by the fact that the portal vein is difficult to access. Here we present a new, non-invasive method to measure hepatic fructose uptake and metabolism with the use of deuterium metabolic imaging (DMI) upon administration of [6,6'-2H2]fructose. Using both [6,6'-2H2]glucose and [6,6'-2H2]fructose, we determined differences in the uptake and metabolism of glucose and fructose in the mouse liver with dynamic DMI. The deuterated compounds were administered either by fast intravenous (IV) bolus injection or by slow IV infusion. Directly after IV bolus injection of [6,6'-2H2]fructose, a more than two-fold higher initial uptake and subsequent 2.5-fold faster decay of fructose was observed in the mouse liver as compared to that of glucose after bolus injection of [6,6'-2H2]glucose. In contrast, after slow IV infusion of fructose, the 2H fructose/glucose signal maximum in liver spectra was lower compared to the 2H glucose signal maximum after slow infusion of glucose. With both bolus injection and slow infusion protocols, deuterium labeling of water was faster with fructose than with glucose. These observations are in line with a higher extraction and faster turnover of fructose in the liver, as compared with glucose. DMI with [6,6'-2H2]glucose and [6,6'-2H2]fructose could potentially contribute to a better understanding of healthy human liver metabolism and aberrations in metabolic diseases.
RESUMEN
Metasurfaces are artificial electromagnetic boundaries or interfaces usually implemented as two-dimensional periodic structures with subwavelength periodicity and engineered properties of constituent unit cells. The electromagnetic bandgap (EBG) effect in metasurfaces prevents all surface modes from propagating in a certain frequency band. While metasurfaces provide a number of important applications in microwave antennas and antenna arrays, their features are also highly suitable for MRI applications. In this work we perform a proof-of-principle experiment to study finite structures based on mushroom-type EBG metasurfaces and employ them for suppression of inter-element coupling in dipole transceive array coils for body imaging at 7T. We firstly show experimentally that employment of mushroom structures leads to reduction of coupling between adjacent closely-spaced dipole antenna elements of a 7T transceive body array, which reduces scattering losses in neighboring channels. The studied setup consists of two active fractionated dipole antennas previously designed by the authors for body imaging at 7T. These are placed on top of a body-mimicking phantom and equipped with the manufactured finite-size periodic structure tuned to have EBG properties at the Larmor frequency of 298MHz. To improve the detection range of the B1+ field distribution of the top elements, four additional elements were positioned along the bottom side of the phantom. Bench measurements of a scattering matrix showed that coupling between the two top elements can be considerably reduced depending on the distance to the EBG structure. On the other hand, the measurements performed on a 7T MRI machine indicated redistribution of the B1+ field due to interaction between the dipoles with the structure. When the structure is located just over two closely spaced dipoles, one can reach a very high isolation improvement of -14dB accompanied by a strong field redistribution. In contrast, when put at a certain height over the antennas the structure provides a moderate isolation improvement together with a slight increase of B1+ level. This study provides a tool for the decoupling of dipole antennas in ultrahigh field transceive arrays, possibly resulting in denser element placement and/or larger subject-element spacing.