Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Toxicol Appl Pharmacol ; 232(3): 376-83, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-18706436

RESUMEN

Neuropathy target esterase (NTE) plays critical roles in embryonic development and maintenance of peripheral axons. It is a secondary target of some organophosphorus toxicants including analogs of insecticides and chemical warfare agents. Although the mechanistic role of NTE in vivo is poorly defined, it is known to hydrolyze lysophosphatidylcholine (LPC) in vitro and may protect cell membranes from cytotoxic accumulation of LPC. To determine the cellular function of NTE, Neuro-2a and COS-7 cells were transfected with a full-length human NTE-containing plasmid yielding recombinant NTE (rNTE). We find the same inhibitor sensitivity and specificity profiles for rNTE assayed with LPC or phenyl valerate (a standard NTE substrate) and that this correlation extends to the LPC hydrolases of human brain, lymphocytes and erythrocytes. All of these LPC hydrolases are therefore very similar to each other in respect to a conserved inhibitor binding site conformation. NTE is expressed in brain and lymphocytes and contributes to LPC hydrolase activities in these tissues. The enzyme or enzymes responsible for erythrocyte LPC hydrolase activity remain to be identified. We also show that rNTE protects Neuro-2a and COS-7 cells from exogenous LPC cytotoxicity. Expression of rNTE in Neuro-2a cells alters their phospholipid balance (analyzed by liquid chromatography-mass spectrometry with single ion monitoring) by lowering LPC-16:0 and LPC-18:0 and elevating glycerophosphocholine without a change in phosphatidylcholine-16:0/18:1 or 16:0/18:2. NTE therefore serves an important function in LPC homeostasis and action.


Asunto(s)
Hidrolasas de Éster Carboxílico/fisiología , Lisofosfatidilcolinas/farmacología , Animales , Encéfalo/enzimología , Células COS , Células Cultivadas , Chlorocebus aethiops , Eritrocitos/enzimología , Humanos , Lisofosfatidilcolinas/metabolismo , Organofosfatos/toxicidad
2.
Chem Biol Interact ; 175(1-3): 355-64, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18495101

RESUMEN

Lipases play key roles in nearly all cells and organisms. Potent and selective inhibitors help to elucidate their physiological functions and associated metabolic pathways. Organophosphorus (OP) compounds are best known for their anticholinesterase properties but selectivity for lipases and other targets can also be achieved through structural optimization. This review considers several lipid systems in brain modulated by highly OP-sensitive lipases. Neuropathy target esterase (NTE) hydrolyzes lysophosphatidylcholine (lysoPC) as a preferred substrate. Gene deletion of NTE in mice is embryo lethal and the heterozygotes are hyperactive. NTE is very sensitive in vitro and in vivo to direct-acting OP delayed neurotoxicants and the related NTE-related esterase (NTE-R) is also inhibited in vivo. KIAA1363 hydrolyzes acetyl monoalkylglycerol ether (AcMAGE) of the platelet-activating factor (PAF) de novo biosynthetic pathway and is a marker of cancer cell invasiveness. It is also a detoxifying enzyme that hydrolyzes chlorpyrifos oxon (CPO) and some other potent insecticide metabolites. Monoacylglycerol lipase and fatty acid amide hydrolase regulate endocannabinoid levels with roles in motility, pain and memory. Inhibition of these enzymes in mice by OPs, such as isopropyl dodecylfluorophosphonate (IDFP), leads to dramatic elevation of brain endocannabinoids and distinct cannabinoid-dependent behavior. Hormone-sensitive lipase that hydrolyzes cholesteryl esters and diacylglycerols is a newly recognized in vivo CPO- and IDFP-target in brain. The OP chemotype can therefore be used in proteomic and metabolomic studies to further elucidate the biological function and toxicological significance of lipases in lipid metabolism. Only the first steps have been taken to achieve appropriate selective action for OP therapeutic agents.


Asunto(s)
Encéfalo/efectos de los fármacos , Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Lipasa/metabolismo , Lisofosfolípidos/metabolismo , Organofosfatos/farmacología , Éteres Fosfolípidos/metabolismo , Animales , Encéfalo/metabolismo , Humanos
3.
NPJ Aging Mech Dis ; 2: 16022, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28721274

RESUMEN

Accumulation of DNA damage is intricately linked to aging, aging-related diseases and progeroid syndromes such as Cockayne syndrome (CS). Free radicals from endogenous oxidative energy metabolism can damage DNA, however the potential of acute or chronic DNA damage to modulate cellular and/or organismal energy metabolism remains largely unexplored. We modeled chronic endogenous genotoxic stress using a DNA repair-deficient Csa-/-|Xpa-/- mouse model of CS. Exogenous genotoxic stress was modeled in mice in vivo and primary cells in vitro treated with different genotoxins giving rise to diverse spectrums of lesions, including ultraviolet radiation, intrastrand crosslinking agents and ionizing radiation. Both chronic endogenous and acute exogenous genotoxic stress increased mitochondrial fatty acid oxidation (FAO) on the organismal level, manifested by increased oxygen consumption, reduced respiratory exchange ratio, progressive adipose loss and increased FAO in tissues ex vivo. In multiple primary cell types, the metabolic response to different genotoxins manifested as a cell-autonomous increase in oxidative phosphorylation (OXPHOS) subsequent to a transient decline in steady-state NAD+ and ATP levels, and required the DNA damage sensor PARP-1 and energy-sensing kinase AMPK. We conclude that increased FAO/OXPHOS is a general, beneficial, adaptive response to DNA damage on cellular and organismal levels, illustrating a fundamental link between genotoxic stress and energy metabolism driven by the energetic cost of DNA damage. Our study points to therapeutic opportunities to mitigate detrimental effects of DNA damage on primary cells in the context of radio/chemotherapy or progeroid syndromes.

4.
Aging Cell ; 12(6): 1144-7, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23895664

RESUMEN

Cockayne syndrome (CS) is a rare autosomal recessive segmental progeria characterized by growth failure, lipodystrophy, neurological abnormalities, and photosensitivity, but without skin cancer predisposition. Cockayne syndrome life expectancy ranges from 5 to 16 years for the two most severe forms (types II and I, respectively). Mouse models of CS have thus far been of limited value due to either very mild phenotypes, or premature death during postnatal development prior to weaning. The cause of death in severe CS models is unknown, but has been attributed to extremely rapid aging. Here, we found that providing mutant pups with soft food from as late as postnatal day 14 allowed survival past weaning with high penetrance independent of dietary macronutrient balance in a novel CS model (Csa(-/-) | Xpa(-/-)). Survival past weaning revealed a number of CS-like symptoms including small size, progressive loss of adiposity, and neurological symptoms, with a maximum lifespan of 19 weeks. Our results caution against interpretation of death before weaning as premature aging, and at the same time provide a valuable new tool for understanding mechanisms of progressive CS-related progeroid symptoms including lipodystrophy and neurodysfunction.


Asunto(s)
Síndrome de Cockayne/fisiopatología , Dieta , Longevidad , Progeria/fisiopatología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Lipodistrofia/patología , Ratones , Ratones Endogámicos C57BL , Destete
5.
Toxicol Appl Pharmacol ; 224(1): 98-104, 2007 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-17663017

RESUMEN

Brain neuropathy target esterase (NTE), associated with organophosphorus (OP)-induced delayed neuropathy, has the same OP inhibitor sensitivity and specificity profiles assayed in the classical way (paraoxon-resistant, mipafox-sensitive hydrolysis of phenyl valerate) or with lysophosphatidylcholine (LysoPC) as the substrate. Extending our earlier observation with mice, we now examine human erythrocyte, lymphocyte, and brain LysoPC hydrolases as possible sensitive targets for OP delayed neurotoxicants and insecticides. Inhibitor profiling of human erythrocytes and lymphocytes gave the surprising result of essentially the same pattern as with brain. Human erythrocyte LysoPC hydrolases are highly sensitive to OP delayed neurotoxicants, with in vitro IC50 values of 0.13-85 nM for longer alkyl analogs, and poorly sensitive to the current OP insecticides. In agricultural workers, erythrocyte LysoPC hydrolyzing activities are similar for newborn children and their mothers and do not vary with paraoxonase status but have high intersample variation that limits their use as a biomarker. Mouse erythrocyte LysoPC hydrolase activity is also of low sensitivity in vitro and in vivo to the OP insecticides whereas the delayed neurotoxicant ethyl n-octylphosphonyl fluoride inhibits activity in vivo at 1-3 mg/kg. Overall, inhibition of blood LysoPC hydrolases is as good as inhibition of brain NTE as a predictor of OP inducers of delayed neuropathy. NTE and lysophospholipases (LysoPLAs) both hydrolyze LysoPC, yet they are in distinct enzyme families with no sequence homology and very different catalytic sites. The relative contributions of NTE and LysoPLAs to LysoPC hydrolysis and clearance from erythrocytes, lymphocytes, and brain remain to be defined.


Asunto(s)
Acetilcolinesterasa/metabolismo , Encéfalo/enzimología , Eritrocitos/enzimología , Linfocitos/enzimología , Neurotoxinas/toxicidad , Compuestos Organofosforados/toxicidad , Acetilcolinesterasa/sangre , Adulto , Enfermedades de los Trabajadores Agrícolas/sangre , Enfermedades de los Trabajadores Agrícolas/enzimología , Animales , Arildialquilfosfatasa/genética , Encéfalo/efectos de los fármacos , Femenino , Genotipo , Humanos , Técnicas In Vitro , Recién Nacido , Insecticidas/toxicidad , Ratones , Embarazo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda