Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(41): 20382-20387, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548391

RESUMEN

Biodiversity loss is one major outcome of human-mediated ecosystem disturbance. One way that humans have triggered wildlife declines is by transporting disease-causing agents to remote areas of the world. Amphibians have been hit particularly hard by disease due in part to a globally distributed pathogenic chytrid fungus (Batrachochytrium dendrobatidis [Bd]). Prior research has revealed important insights into the biology and distribution of Bd; however, there are still many outstanding questions in this system. Although we know that there are multiple divergent lineages of Bd that differ in pathogenicity, we know little about how these lineages are distributed around the world and where lineages may be coming into contact. Here, we implement a custom genotyping method for a global set of Bd samples. This method is optimized to amplify and sequence degraded DNA from noninvasive skin swab samples. We describe a divergent lineage of Bd, which we call BdASIA3, that appears to be widespread in Southeast Asia. This lineage co-occurs with the global panzootic lineage (BdGPL) in multiple localities. Additionally, we shed light on the global distribution of BdGPL and highlight the expanded range of another lineage, BdCAPE. Finally, we argue that more monitoring needs to take place where Bd lineages are coming into contact and where we know little about Bd lineage diversity. Monitoring need not use expensive or difficult field techniques but can use archived swab samples to further explore the history-and predict the future impacts-of this devastating pathogen.


Asunto(s)
Anfibios/microbiología , Quitridiomicetos , Micosis/veterinaria , Animales , Quitridiomicetos/genética , Salud Global , Micosis/epidemiología , Micosis/microbiología
2.
Proc Biol Sci ; 288(1953): 20210782, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34157877

RESUMEN

Emerging infectious diseases are a pressing threat to global biological diversity. Increased incidence and severity of novel pathogens underscores the need for methodological advances to understand pathogen emergence and spread. Here, we use genetic epidemiology to test, and challenge, key hypotheses about a devastating zoonotic disease impacting amphibians globally. Using an amplicon-based sequencing method and non-invasive samples we retrospectively explore the history of the fungal pathogen Batrachochytrium dendrobatidis (Bd) in two emblematic amphibian systems: the Sierra Nevada of California and Central Panama. The hypothesis in both regions is the hypervirulent Global Panzootic Lineage of Bd (BdGPL) was recently introduced and spread rapidly in a wave-like pattern. Our data challenge this hypothesis by demonstrating similar epizootic signatures can have radically different underlying evolutionary histories. In Central Panama, our genetic data confirm a recent and rapid pathogen spread. However, BdGPL in the Sierra Nevada has remarkable spatial structuring, high genetic diversity and a relatively older history inferred from time-dated phylogenies. Thus, this deadly pathogen lineage may have a longer history in some regions than assumed, providing insights into its origin and spread. Overall, our results highlight the importance of integrating observed wildlife die-offs with genetic data to more accurately reconstruct pathogen outbreaks.


Asunto(s)
Quitridiomicetos , Enfermedades Transmisibles Emergentes , Anfibios , Animales , Quitridiomicetos/genética , Panamá , Estudios Retrospectivos
3.
Glob Chang Biol ; 27(1): 50-70, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33150627

RESUMEN

Avoiding extinction in a rapidly changing environment often relies on a species' ability to quickly adapt in the face of extreme selective pressures. In Panamá, two closely related harlequin frog species (Atelopus varius and Atelopus zeteki) are threatened with extinction due to the fungal pathogen Batrachochytrium dendrobatidis (Bd). Once thought to be nearly extirpated from Panamá, A. varius have recently been rediscovered in multiple localities across their historical range; however, A. zeteki are possibly extinct in the wild. By leveraging a unique collection of 186 Atelopus tissue samples collected before and after the Bd outbreak in Panama, we describe the genetics of persistence for these species on the brink of extinction. We sequenced the transcriptome and developed an exome-capture assay to sequence the coding regions of the Atelopus genome. Using these genetic data, we evaluate the population genetic structure of historical A. varius and A. zeteki populations, describe changes in genetic diversity over time, assess the relationship between contemporary and historical individuals, and test the hypothesis that some A. varius populations have rapidly evolved to resist or tolerate Bd infection. We found a significant decrease in genetic diversity in contemporary (compared to historical) A. varius populations. We did not find strong evidence of directional allele frequency change or selection for Bd resistance genes, but we uncovered a set of candidate genes that warrant further study. Additionally, we found preliminary evidence of recent migration and gene flow in one of the largest persisting A. varius populations in Panamá, suggesting the potential for genetic rescue in this system. Finally, we propose that previous conservation units should be modified, as clear genetic breaks do not exist beyond the local population level. Our data lay the groundwork for genetically informed conservation and advance our understanding of how imperiled species might be rescued from extinction.


Asunto(s)
Anuros/genética , Especies en Peligro de Extinción , Animales , Bufonidae , Panamá , Secuenciación del Exoma
4.
Conserv Biol ; 35(5): 1659-1668, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33586273

RESUMEN

Anurans (frogs and toads) are among the most globally threatened taxonomic groups. Successful conservation of anurans will rely on improved data on the status and changes in local populations, particularly for rare and threatened species. Automated sensors, such as acoustic recorders, have the potential to provide such data by massively increasing the spatial and temporal scale of population sampling efforts. Analyzing such data sets will require robust and efficient tools that can automatically identify the presence of a species in audio recordings. Like bats and birds, many anuran species produce distinct vocalizations that can be captured by autonomous acoustic recorders and represent excellent candidates for automated recognition. However, in contrast to birds and bats, effective automated acoustic recognition tools for anurans are not yet widely available. An effective automated call-recognition method for anurans must be robust to the challenges of real-world field data and should not require extensive labeled data sets. We devised a vocalization identification tool that classifies anuran vocalizations in audio recordings based on their periodic structure: the repeat interval-based bioacoustic identification tool (RIBBIT). We applied RIBBIT to field recordings to study the boreal chorus frog (Pseudacris maculata) of temperate North American grasslands and the critically endangered variable harlequin frog (Atelopus varius) of tropical Central American rainforests. The tool accurately identified boreal chorus frogs, even when they vocalized in heavily overlapping choruses and identified variable harlequin frog vocalizations at a field site where it had been very rarely encountered in visual surveys. Using a few simple parameters, RIBBIT can detect any vocalization with a periodic structure, including those of many anurans, insects, birds, and mammals. We provide open-source implementations of RIBBIT in Python and R to support its use for other taxa and communities.


Los anuros (ranas y sapos) se encuentran dentro de los grupos taxonómicos más amenazados a nivel mundial. La conservación exitosa de los anuros dependerá de información mejorada sobre el estado y los cambios en las poblaciones locales, particularmente para las especies raras y amenazadas. Los sensores automatizados, como las grabadoras acústicas, tienen el potencial para proporcionar dicha información al incrementar masivamente la escala espacial y temporal de los esfuerzos de muestreo poblacional. El análisis de dicha información requerirá herramientas robustas y eficientes que puedan identificar automáticamente la presencia de una especie en las grabaciones de audio. Como las aves y los murciélagos, muchas especies de anuros producen vocalizaciones distintivas que pueden ser capturadas por las grabadoras acústicas autónomas y también son excelentes candidatas para el reconocimiento automatizado. Sin embargo, a diferencia de las aves y los murciélagos, todavía no se cuenta con una disponibilidad extensa de herramientas para el reconocimiento acústico automatizado de los anuros. Un método efectivo para el reconocimiento automatizado del canto de los anuros debe ser firme ante los retos de los datos reales de campo y no debería requerir conjuntos extensos de datos etiquetados. Diseñamos una herramienta de identificación de las vocalizaciones: la herramienta de identificación bioacústica basada en el intervalo de repetición (RIBBIT), el cual clasifica las vocalizaciones de los anuros en las grabaciones de audio con base en su estructura periódica. Aplicamos la RIBBIT a las grabaciones de campo para estudiar a dos especies: la rana coral boreal (Pseudacris maculata) de los pastizales templados de América del Norte y la rana arlequín variable (Atelopus varius), críticamente en peligro de extinción, de las selvas tropicales de América Central. Mostramos que RIBBIT puede identificar correctamente a las ranas corales boreales, incluso cuando vocalizan en coros con mucha superposición, y puede identificar las vocalizaciones de la rana arlequín variable en un sitio de campo en donde rara vez se le ha visto durante censos visuales. Mediante relativamente unos cuantos parámetros simples, RIBBIT puede detectar cualquier vocalización con una estructura periódica, incluyendo aquellas de muchos anuros, insectos, aves y mamíferos. Proporcionamos implementaciones de fuente abierta de RIBBIT en Python y en R para fomentar su uso para otros taxones y comunidades.


Asunto(s)
Conservación de los Recursos Naturales , Vocalización Animal , Acústica , Animales , Anuros , Aves
5.
BMC Ecol ; 20(1): 18, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245440

RESUMEN

BACKGROUND: Emerging infectious diseases (EIDs) are contributing to species die-offs worldwide. We can better understand EIDs by using ecological approaches to study pathogen biology. For example, pathogens are exposed to variable temperatures across daily, seasonal, and annual scales. Exposure to temperature fluctuations may reduce pathogen growth and reproduction, which could affect pathogen virulence, transmission, and environmental persistence with implications for disease. We examined the effect of a variable thermal environment on reproductive life history traits of the fungal pathogen Batrachochytrium dendrobatidis (Bd). Bd causes chytridiomycosis, an emerging infectious disease of amphibians. As a pathogen of ectothermic hosts, Bd can be exposed to large temperature fluctuations in nature. To determine the effect of fluctuating temperatures on Bd growth and reproduction, we collected temperature data from breeding pools of the Yosemite toad (Anaxyrus canorus), a federally threatened species that is susceptible to chytridiomycosis. We cultured Bd under a daily fluctuating temperature regime that simulated Yosemite toad breeding pool temperatures and measured Bd growth, reproduction, fecundity, and viability. RESULTS: We observed decreased Bd growth and reproduction in a diurnally fluctuating thermal environment as compared to cultures grown at constant temperatures within the optimal Bd thermal range. We also found that Bd exhibits temperature-induced trade-offs under constant low and constant high temperature conditions. CONCLUSIONS: Our results provide novel insights on variable responses of Bd to dynamic thermal conditions and highlight the importance of incorporating realistic temperature fluctuations into investigations of pathogen ecology and EIDs.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios , Animales , Reproducción , Temperatura
6.
Dis Aquat Organ ; 129(2): 159-164, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29972376

RESUMEN

The ability to isolate and purify pathogens is important for the study of infectious disease. A protocol for isolating Batrachochytrium dendrobatidis (Bd), a lethal pathogen of amphibians, has been available for over a decade, but the method relies on sacrificing infected animals. We validated a non-lethal protocol for Bd isolation that uses biopsy punches from toe webbing to collect skin samples from live amphibians in remote field locations. We successfully isolated Bd from the Cascades frog Rana cascadae and found a positive association between Bd infection and probability of Bd growth in culture. Recapture rates of sampled animals suggest that our isolation protocol did not affect frog survival. The ability to collect isolates from live animals will facilitate investigations of the biology of Bd and enhance amphibian conservation efforts.


Asunto(s)
Anfibios/microbiología , Quitridiomicetos/inmunología , Micosis/veterinaria , Animales , Micosis/microbiología
7.
Oecologia ; 184(2): 363-373, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28424893

RESUMEN

The thermal sensitivities of organisms regulate a wide range of ecological interactions, including host-parasite dynamics. The effect of temperature on disease ecology can be remarkably complex in disease systems where the hosts are ectothermic and where thermal conditions constrain pathogen reproductive rates. Amphibian chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis (Bd), is a lethal fungal disease that is influenced by temperature. However, recent temperature studies have produced contradictory findings, suggesting that our current understanding of thermal effects on Bd may be incomplete. We investigated how temperature affects three different Bd strains to evaluate diversity in thermal responses. We quantified growth across the entire thermal range of Bd, and beyond the known thermal limits (T max and T min). Our results show that all Bd strains remained viable and grew following 24 h freeze (-12 °C) and heat shock (28 °C) treatments. Additionally, we found that two Bd strains had higher logistic growth rates (r) and carrying capacities (K) at the upper and lower extremities of the temperature range, and especially in low temperature conditions (2-3 °C). In contrast, a third strain exhibited relatively lower growth rates and carrying capacities at these same thermal extremes. Overall, our results suggest that there is considerable variation among Bd strains in thermal tolerance, and they establish a new thermal sensitivity profile for Bd. More generally, our findings point toward important questions concerning the mechanisms that dictate fungal thermal tolerances and temperature-dependent pathogenesis in other fungal disease systems.


Asunto(s)
Anfibios , Quitridiomicetos/crecimiento & desarrollo , Micosis , Temperatura , Animales , Quitridiomicetos/patogenicidad , Conservación de los Recursos Naturales
8.
Philos Trans R Soc Lond B Biol Sci ; 378(1882): 20220125, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37305911

RESUMEN

The immune equilibrium model suggests that exposure to microbes during early life primes immune responses for pathogen exposure later in life. While recent studies using a range of gnotobiotic (germ-free) model organisms offer support for this theory, we currently lack a tractable model system for investigating the influence of the microbiome on immune system development. Here, we used an amphibian species (Xenopus laevis) to investigate the importance of the microbiome in larval development and susceptibility to infectious disease later in life. We found that experimental reductions of the microbiome during embryonic and larval stages effectively reduced microbial richness, diversity and altered community composition in tadpoles prior to metamorphosis. In addition, our antimicrobial treatments resulted in few negative effects on larval development, body condition, or survival to metamorphosis. However, contrary to our predictions, our antimicrobial treatments did not alter susceptibility to the lethal fungal pathogen Batrachochytrium dendrobatidis (Bd) in the adult life stage. While our treatments to reduce the microbiome during early development did not play a critical role in determining susceptibility to disease caused by Bd in X. laevis, they nevertheless indicate that developing a gnotobiotic amphibian model system may be highly useful for future immunological investigations. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.


Asunto(s)
Sistema Inmunológico , Microbiota , Animales , Larva , Metamorfosis Biológica , Xenopus laevis
9.
Dis Aquat Organ ; 98(1): 11-25, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22422126

RESUMEN

Amphibian conservation goals depend on effective disease-treatment protocols. Desirable protocols are species, life stage, and context specific, but currently few treatment options exist for amphibians infected with the chytrid fungus Batrachochytrium dendrobatidis (Bd). Treatment options, at present, include antifungal drugs and heat therapy, but risks of toxicity and side-effects make these options untenable in some cases. Here, we report on the comparison of several novel treatments with a more generally accepted antifungal treatment in experimental scientific trials to treat Bd-infected frogs including Alytes obstetricans tadpoles and metamorphs, Bufo bufo and Limnodynastes peronii metamorphs, and Lithobates pipiens and Rana muscosa adults. The experimental treatments included commercial antifungal products (itraconazole, mandipropamid, steriplantN, and PIP Pond Plus), antimicrobial skin peptides from the Bd-resistant Pelophylax esculentus, microbial treatments (Pedobacter cryoconitis), and heat therapy (35°C for 24 h). None of the new experimental treatments were considered successful in terms of improving survival; however, these results may advance future research by indicating the limits and potential of the various protocols. Caution in the use of itraconazole is warranted because of observed toxicity in metamorphic and adult frogs, even at low concentrations. Results suggest that rather than focusing on a single cure-all, diverse lines of research may provide multiple options for treating Bd infection in amphibians. Learning from 'failed treatments' is essential for the timely achievement of conservation goals and one of the primary aims for a publicly accessible treatment database under development.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/uso terapéutico , Anuros , Quitridiomicetos , Calor/uso terapéutico , Itraconazol/uso terapéutico , Micosis/veterinaria , Animales , Antifúngicos/uso terapéutico , Femenino , Larva , Masculino , Micosis/microbiología , Micosis/terapia , Probióticos , Factores de Tiempo , Insuficiencia del Tratamiento
10.
Integr Comp Biol ; 62(6): 1595-1605, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-35640912

RESUMEN

To combat the threat of emerging infectious diseases in wildlife, ecoimmunologists seek to understand the complex interactions among pathogens, their hosts, and their shared environments. The cutaneous fungal pathogen Batrachochytrium dendrobatidis (Bd), has led to the decline of innumerable amphibian species, including the Panamanian golden frog (Atelopus zeteki). Given that Bd can evade or dampen the acquired immune responses of some amphibians, nonspecific immune defenses are thought to be especially important for amphibian defenses against Bd. In particular, skin secretions constitute a vital component of amphibian innate immunity against skin infections, but their role in protecting A. zeteki from Bd is unknown. We investigated the importance of this innate immune component by reducing the skin secretions from A. zeteki and evaluating their effectiveness against Bd in vitro and in vivo. Following exposure to Bd in a controlled inoculation experiment, we compared key disease characteristics (e.g., changes in body condition, prevalence, pathogen loads, and survival) among groups of frogs that had their skin secretions reduced and control frogs that maintained their skin secretions. Surprisingly, we found that the skin secretions collected from A. zeteki increased Bd growth in vitro. This finding was further supported by infection and survival patterns in the in vivo experiment where frogs with reduced skin secretions tended to have lower pathogen loads and survive longer compared to frogs that maintained their secretions. These results suggest that the skin secretions of A. zeteki are not only ineffective at inhibiting Bd but may enhance Bd growth, possibly leading to greater severity of disease and higher mortality in this highly vulnerable species. These results differ from those of previous studies in other amphibian host species that suggest that skin secretions are a key defense in protecting amphibians from developing severe chytridiomycosis. Therefore, we suggest that the importance of immune components cannot be generalized across all amphibian species or over time. Moreover, the finding that skin secretions may be enhancing Bd growth emphasizes the importance of investigating these immune components in detail, especially for species that are a conservation priority.


Asunto(s)
Quitridiomicetos , Micosis , Animales , Batrachochytrium , Quitridiomicetos/fisiología , Bufonidae , Anuros/microbiología , Micosis/veterinaria , Micosis/microbiología
11.
R Soc Open Sci ; 9(11): 211986, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36425515

RESUMEN

Temperature is a critically important factor in many infectious disease systems, because it can regulate responses in both the host and the pathogen. White-nose syndrome (WNS) in bats is a severe infectious disease caused by the temperature-sensitive fungus, Pseudogymnoascus destructans (Pd). One feature of WNS is an increase in the frequency of arousal bouts (i.e. when bat body temperatures are elevated) in Pd-infected bats during hibernation. While several studies have proposed that increased frequency of arousals may play a role in the pathophysiology of WNS, it is unknown if the temperature fluctuations might mediate Pd growth. We hypothesized that exposure to a high frequency of elevated temperatures would reduce Pd growth due to thermal constraints on the pathogen. We simulated the thermal conditions for arousal bouts of uninfected and infected bats during hibernation (fluctuating from 8 to 25°C at two different rates) and quantified Pd growth in vitro. We found that increased exposure to high temperatures significantly reduced Pd growth. Because temperature is one of the most critical abiotic factors mediating host-pathogen interactions, resolving how Pd responds to fluctuating temperatures will provide insights for understanding WNS in bats and other fungal diseases.

12.
PLoS One ; 17(3): e0261047, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35286323

RESUMEN

Host-pathogen specificity can arise from certain selective environments mediated by both the host and pathogen. Therefore, understanding the degree to which host species identity is correlated with pathogen genotype can help reveal historical host-pathogen dynamics. One animal disease of particular concern is chytridiomycosis, typically caused by the global panzootic lineage of the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd), termed Bd-GPL. This pathogen lineage has caused devastating declines in amphibian communities around the world. However, the site of origin for the common ancestor of modern Bd-GPL and the fine-scale transmission dynamics of this lineage have remained a mystery. This is especially the case in North America where Bd-GPL is widespread, but disease outbreaks occur sporadically. Herein, we use Bd genetic data collected throughout the United States from amphibian skin swabs and cultured isolate samples to investigate Bd genetic patterns. We highlight two case studies in Pennsylvania and Nevada where Bd-GPL genotypes are strongly correlated with host species identity. Specifically, in some localities bullfrogs (Rana catesbeiana) are infected with Bd-GPL lineages that are distinct from those infecting other sympatric amphibian species. Overall, we reveal a previously unknown association of Bd genotype with host species and identify the eastern United States as a Bd diversity hotspot and potential site of origin for Bd-GPL.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios/microbiología , Animales , Batrachochytrium , Quitridiomicetos/genética , Genotipo , Micosis/microbiología , Rana catesbeiana/microbiología , Estados Unidos
13.
Ecology ; 103(9): e3759, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35593515

RESUMEN

Host species that can independently maintain a pathogen in a host community and contribute to infection in other species are important targets for disease management. However, the potential of host species to maintain a pathogen is not fixed over time, and an important challenge is understanding how within- and across-season variability in host maintenance potential affects pathogen persistence over longer time scales relevant for disease management (e.g., years). Here, we sought to understand the causes and consequences of seasonal infection dynamics in leopard frogs (Rana sphenocephala and Rana pipiens) infected with the fungal pathogen Batrachochytrium dendrobatidis (Bd). We addressed three questions broadly applicable to seasonal host-parasite systems. First, to what degree are observed seasonal patterns in infection driven by temperature-dependent infection processes compared to seasonal host demographic processes? Second, how does seasonal variation in maintenance potential affect long-term pathogen persistence in multi-host communities? Third, does high deterministic maintenance potential relate to the long-term stochastic persistence of pathogens in host populations with seasonal infection dynamics? To answer these questions, we used field data collected over 3 years on >1400 amphibians across four geographic locations, laboratory and mesocosm experiments, and a novel mathematical model. We found that the mechanisms that drive seasonal prevalence were different from those driving seasonal infection intensity. Seasonal variation in Bd prevalence was driven primarily by changes in host contact rates associated with breeding migrations to and from aquatic habitat. In contrast, seasonal changes in infection intensity were driven by temperature-induced changes in Bd growth rate. Using our model, we found that the maintenance potential of leopard frogs varied significantly throughout the year and that seasonal troughs in infection prevalence made it unlikely that leopard frogs were responsible for long-term Bd persistence in these seasonal amphibian communities, highlighting the importance of alternative pathogen reservoirs for Bd persistence. Our results have broad implications for management in seasonal host-pathogen systems, showing that seasonal changes in host and pathogen vital rates, rather than the depletion of susceptible hosts, can lead to troughs in pathogen prevalence and stochastic pathogen extirpation.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios , Animales , Ecosistema , Micosis/epidemiología , Micosis/veterinaria , Fitomejoramiento , Ranidae
14.
Front Zool ; 8(1): 8, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21496358

RESUMEN

BACKGROUND: Rescuing amphibian diversity is an achievable conservation challenge. Disease mitigation is one essential component of population management. Here we assess existing disease mitigation strategies, some in early experimental stages, which focus on the globally emerging chytrid fungus Batrachochytrium dendrobatidis. We discuss the precedent for each strategy in systems ranging from agriculture to human medicine, and the outlook for each strategy in terms of research needs and long-term potential. RESULTS: We find that the effects of exposure to Batrachochytrium dendrobatidis occur on a spectrum from transient commensal to lethal pathogen. Management priorities are divided between (1) halting pathogen spread and developing survival assurance colonies, and (2) prophylactic or remedial disease treatment. Epidemiological models of chytridiomycosis suggest that mitigation strategies can control disease without eliminating the pathogen. Ecological ethics guide wildlife disease research, but several ethical questions remain for managing disease in the field. CONCLUSIONS: Because sustainable conservation of amphibians in nature is dependent on long-term population persistence and co-evolution with potentially lethal pathogens, we suggest that disease mitigation not focus exclusively on the elimination or containment of the pathogen, or on the captive breeding of amphibian hosts. Rather, successful disease mitigation must be context specific with epidemiologically informed strategies to manage already infected populations by decreasing pathogenicity and host susceptibility. We propose population level treatments based on three steps: first, identify mechanisms of disease suppression; second, parameterize epizootiological models of disease and population dynamics for testing under semi-natural conditions; and third, begin a process of adaptive management in field trials with natural populations.

15.
Front Vet Sci ; 8: 687084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239916

RESUMEN

Emerging infectious disease is a key factor in the loss of amphibian diversity. In particular, the disease chytridiomycosis has caused severe declines around the world. The lethal fungal pathogen that causes chytridiomycosis, Batrachochytrium dendrobatidis (Bd), has affected amphibians in many different environments. One primary question for researchers grappling with disease-induced losses of amphibian biodiversity is what abiotic factors drive Bd pathogenicity in different environments. To study environmental influences on Bd pathogenicity, we quantified responses of Bd phenotypic traits (e.g., viability, zoospore densities, growth rates, and carrying capacities) over a range of environmental temperatures to generate thermal performance curves. We selected multiple Bd isolates that belong to a single genetic lineage but that were collected across a latitudinal gradient. For the population viability, we found that the isolates had similar thermal optima at 21°C, but there was considerable variation among the isolates in maximum viability at that temperature. Additionally, we found the densities of infectious zoospores varied among isolates across all temperatures. Our results suggest that temperatures across geographic point of origin (latitude) may explain some of the variation in Bd viability through vertical shifts in maximal performance. However, the same pattern was not evident for other reproductive parameters (zoospore densities, growth rates, fecundity), underscoring the importance of measuring multiple traits to understand variation in pathogen responses to environmental conditions. We suggest that variation among Bd genetic variants due to environmental factors may be an important determinant of disease dynamics for amphibians across a range of diverse environments.

16.
Dis Aquat Organ ; 92(2-3): 165-74, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21268978

RESUMEN

Effective and safe treatments of amphibian chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd), are needed to prevent mortality in captive programs, reduce the risk of disease spread, and better manage the disease in threatened wild populations. Bd is susceptible to a range of antifungal agents and low levels of heat (>30 degrees C) when tested in vitro, but there are few proven methods for clearing adult amphibians of Bd, and acute drug toxicity is a problem for tadpoles and juveniles. In postmetamorphic animals, heat (32 and 37 degrees C) is the only well-supported treatment. Antifungal drugs have not undergone rigorous testing--for example, trials were small or lacked controls and thorough post-treatment testing. In addition, pharmacokinetic studies have not been performed so there are no data on blood or tissue levels of antifungal agents. However, itraconazole baths have been widely used in amphibian rescue and conservation programs and anecdotal evidence suggests that they are effective for adults and subadults. In an experimental trial with tadpoles, a low dose of itraconazole cleared Bd but may have been associated with cutaneous depigmentation. Fluconazole appeared safe for tadpoles as it did not cause mortality, and future attempts to find an effective dose may be worthwhile. Palliative restoration of blood sodium and potassium levels by administration of electrolyte solutions appears useful in frogs with clinical chytridiomycosis. Randomised and blinded clinical trials, which include basic pharmacological studies, are urgently needed to provide comparable evidence for the safety and efficacy of treatment options which are likely to vary with amphibian species. Priorities are to validate and optimize the use of heat and itraconazole regimes.


Asunto(s)
Anfibios , Antifúngicos/uso terapéutico , Quitridiomicetos/fisiología , Micosis/veterinaria , Animales , Ensayos Clínicos como Asunto , Calor , Micosis/tratamiento farmacológico , Micosis/microbiología
17.
Dis Aquat Organ ; 92(2-3): 109-12, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21268972

RESUMEN

The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is lethal to many species of amphibians worldwide. Many studies have investigated the epidemiology of chytridiomycosis in amphibian populations, but few have considered possible host-pathogen coevolution. More specifically, investigations focused on the evolution of Bd, and the link with Bd virulence, are needed. Such studies, which may be important for conservation management of amphibians, depend on access to Bd isolates. Here we provide a summary of known Bd isolates that have been collected and archived in various locations around the world. Of 257 Bd isolates, we found that 53% originate from ranids in the United States. In many cases, detailed information on isolate origin is unavailable, and it is unknown how many isolates are cryo-archived. We suggest the creation of a centralized database of isolate information, and we urge researchers and managers to isolate and archive Bd to facilitate future research on chytridiomycosis.


Asunto(s)
Quitridiomicetos/clasificación , Quitridiomicetos/aislamiento & purificación , Manejo de Especímenes , Anfibios , Animales , Micosis/epidemiología , Micosis/microbiología , Micosis/veterinaria
18.
J Exp Zool A Ecol Integr Physiol ; 333(10): 706-719, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33052039

RESUMEN

Understanding host immune function and ecoimmunology is increasingly important at a time when emerging infectious diseases (EIDs) threaten wildlife. One EID that has emerged and spread widely in recent years is chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which is implicated unprecedented amphibian declines around the world. The impacts of Bd have been severe for many amphibian species, but some populations have exhibited signs of persistence, and even recovery, in some regions. Many mechanisms may underpin this pattern and amphibian immune responses are likely one key component. Although we have made great strides in understanding amphibian immunity, the complement system remains poorly understood. The complement system is a nonspecific, innate immune defense that is known to enhance other immune responses. Complement activation can occur by three different biochemical pathways and result in protective mechanisms, such as inflammation, opsonization, and pathogen lysis, thereby providing protection to the host. We currently lack an understanding of complement pathway activation for chytridiomycosis, but several studies have suggested that it may be a key part of an early and robust immune response that confers host resistance. Here, we review the available research on the complement system in general as well as amphibian complement responses to Bd infection. Additionally, we propose future research directions that will increase our understanding of the amphibian complement system and other immune responses to Bd. Finally, we suggest how a deeper understanding of amphibian immunity could enhance the conservation and management of amphibian species that are threatened by chytridiomycosis.


Asunto(s)
Anfibios/inmunología , Batrachochytrium/inmunología , Proteínas del Sistema Complemento/inmunología , Micosis/veterinaria , Anfibios/microbiología , Animales , Micosis/inmunología , Micosis/microbiología
19.
Science ; 367(6484)2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-32193294

RESUMEN

Lambert et al question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species.


Asunto(s)
Quitridiomicetos , Micosis , Anfibios , Animales , Biodiversidad , Estudios Retrospectivos
20.
Ecohealth ; 16(2): 346-350, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31124019

RESUMEN

The disease chytridiomycosis is responsible for global amphibian declines. Chytridiomycosis is caused by Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), fungal pathogens with stationary and transmissible life stages. Establishing methods that quantify growth and survival of both life stages can facilitate research on the pathophysiology and disease ecology of these pathogens. We tested the efficacy of the MTT assay, a colorimetric test of cell viability, and found it to be a reliable method for quantifying the viability of Bd and Bsal stationary life stages. This method can provide insights into these pathogens' growth and reproduction to improve our understanding of chytridiomycosis.


Asunto(s)
Quitridiomicetos , Micosis/veterinaria , Anfibios/microbiología , Animales , Quitridiomicetos/fisiología , Micosis/microbiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda