Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Sleep Res ; 33(2): e14015, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37572052

RESUMEN

Automatic estimation of sleep structure is an important aspect in moving sleep monitoring from clinical laboratories to people's homes. However, the transition to more portable systems should not happen at the expense of important physiological signals, such as respiration. Here, we propose the use of cardiorespiratory signals obtained by a suprasternal pressure (SSP) sensor to estimate sleep stages. The sensor is already used for diagnosis of sleep-disordered breathing (SDB) conditions, but besides respiratory effort it can detect cardiac vibrations transmitted through the trachea. We collected the SSP sensor signal in 100 adults (57 male) undergoing clinical polysomnography for suspected sleep disorders, including sleep apnea syndrome, insomnia, and movement disorders. Here, we separate respiratory effort and cardiac activity related signals, then input these into a neural network trained to estimate sleep stages. Using the original mixed signal the results show a moderate agreement with manual scoring, with a Cohen's kappa of 0.53 in Wake/N1-N2/N3/rapid eye movement sleep discrimination and 0.62 in Wake/Sleep. We demonstrate that decoupling the two signals and using the cardiac signal to estimate the instantaneous heart rate improves the process considerably, reaching an agreement of 0.63 and 0.71. Our proposed method achieves high accuracy, specificity, and sensitivity across different sleep staging tasks. We also compare the total sleep time calculated with our method against manual scoring, with an average error of -1.83 min but a relatively large confidence interval of ±55 min. Compact systems that employ the SSP sensor information-rich signal may enable new ways of clinical assessments, such as night-to-night variability in obstructive sleep apnea and other sleep disorders.


Asunto(s)
Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Adulto , Humanos , Masculino , Síndromes de la Apnea del Sueño/diagnóstico , Sueño/fisiología , Algoritmos , Fases del Sueño/fisiología
2.
Acta Obstet Gynecol Scand ; 102(11): 1511-1520, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37563851

RESUMEN

INTRODUCTION: This study aims to investigate non-invasive electrocardiography as a method for the detection of congenital heart disease (CHD) with the help of artificial intelligence. MATERIAL AND METHODS: An artificial neural network was trained for the identification of CHD using non-invasively obtained fetal electrocardiograms. With the help of a Bayesian updating rule, multiple electrocardiographs were used to increase the algorithm's performance. RESULTS: Using 122 measurements containing 65 healthy and 57 CHD cases, the accuracy, sensitivity, and specificity were found to be 71%, 63%, and 77%, respectively. The sensitivity was however 75% and 69% for CHD cases requiring an intervention in the neonatal period and first year of life, respectively. Furthermore, a positive effect of measurement length on the detection performance was observed, reaching optimal performance when using 14 electrocardiography segments (37.5 min) or more. A small negative trend between gestational age and accuracy was found. CONCLUSIONS: The proposed method combining recent advances in obtaining non-invasive fetal electrocardiography with artificial intelligence for the automatic detection of CHD achieved a detection rate of 63% for all CHD and 75% for critical CHD. This feasibility study shows that detection rates of CHD might improve by using electrocardiography-based screening complementary to the standard ultrasound-based screening. More research is required to improve performance and determine the benefits to clinical practice.


Asunto(s)
Inteligencia Artificial , Cardiopatías Congénitas , Embarazo , Femenino , Recién Nacido , Humanos , Teorema de Bayes , Ultrasonografía Prenatal/métodos , Cardiopatías Congénitas/diagnóstico por imagen , Electrocardiografía , Corazón Fetal/diagnóstico por imagen
3.
Acta Obstet Gynecol Scand ; 102(7): 865-872, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37170633

RESUMEN

INTRODUCTION: Fetal electrocardiography (NI-fECG) and electrohysterography (EHG) have been proven more accurate and reliable than conventional non-invasive methods (doppler ultrasound and tocodynamometry) and are less affected by maternal obesity. It is still unknown whether NI-fECG and EHG will eliminate the need for invasive methods, such as the intrauterine pressure catheter and fetal scalp electrode. We studied whether NI-fECG and EHG can be successfully used during labor. MATERIAL AND METHODS: A prospective clinical pilot study was performed in a tertiary care teaching hospital. A total of 50 women were included with a singleton pregnancy with a gestational age between 36+0 and 42+0 weeks and had an indication for continuous intrapartum monitoring. The primary study outcome was the percentage of women with NI-fECG and EHG monitoring throughout the whole delivery. Secondary study outcomes were reason and timing of a switch to conventional monitoring methods (i.e., tocodynamometry and fetal scalp electrode or doppler ultrasound), repositioning of the abdominal electrode patch, success rates (i.e., the percentage of time with signal output), and obstetric and neonatal outcomes. CLINICAL TRIAL REGISTRATION: Dutch trial register (NL8024). RESULTS: In 45 women (90%), NI-fECG and EHG monitoring was used throughout the whole delivery. In the other five women (10%), there was a switch to conventional methods: in two women because of insufficient registration quality of uterine contractions and in three women because of insufficient registration quality of the fetal heart rate. In three out of five cases, the switch was after full dilation was reached. Repositioning of the abdominal electrode patch occurred in two women. The overall success rate was 94.5%. In 16% (n = 8) of women, a cesarean delivery was performed due to non-progressing dilation (n = 7) and due to suspicion of fetal distress (n = 1). Neonatal metabolic acidosis did not occur. Two neonates (4%) were admitted to the neonatal intensive care unit for complications not related to intrapartum monitoring. CONCLUSIONS: NI-fECG and EHG can be successfully used during labor in 90% of women. Future research is needed to conclude whether implementation of electrophysiological monitoring can improve obstetric and neonatal outcomes.


Asunto(s)
Trabajo de Parto , Femenino , Humanos , Recién Nacido , Embarazo , Electrocardiografía , Trabajo de Parto/fisiología , Proyectos Piloto , Estudios Prospectivos , Contracción Uterina
4.
Sensors (Basel) ; 22(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35684656

RESUMEN

This work presents an overview of the main strategies that have been proposed for non-invasive monitoring of heart rate (HR) in extramural and home settings. We discuss three categories of sensing according to what physiological effect is used to measure the pulsatile activity of the heart, and we focus on an illustrative sensing modality for each of them. Therefore, electrocardiography, photoplethysmography, and mechanocardiography are presented as illustrative modalities to sense electrical activity, mechanical activity, and the peripheral effect of heart activity. In this paper, we describe the physical principles underlying the three categories and the characteristics of the different types of sensors that belong to each class, and we touch upon the most used software strategies that are currently adopted to effectively and reliably extract HR. In addition, we investigate the strengths and weaknesses of each category linked to the different applications in order to provide the reader with guidelines for selecting the most suitable solution according to the requirements and constraints of the application.


Asunto(s)
Electrocardiografía , Fotopletismografía , Frecuencia Cardíaca/fisiología , Monitoreo Fisiológico
5.
Sensors (Basel) ; 21(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201834

RESUMEN

Multi-channel measurements from the maternal abdomen acquired by means of dry electrodes can be employed to promote long-term monitoring of fetal heart rate (fHR). The signals acquired with this type of electrode have a lower signal-to-noise ratio and different artifacts compared to signals acquired with conventional wet electrodes. Therefore, starting from the benchmark algorithm with the best performance for fHR estimation proposed by Varanini et al., we propose a new method specifically designed to remove artifacts typical of dry-electrode recordings. To test the algorithm, experimental textile electrodes were employed that produce artifacts typical of dry and capacitive electrodes. The proposed solution is based on a hybrid (hardware and software) pre-processing step designed specifically to remove the disturbing component typical of signals acquired with these electrodes (triboelectricity artifacts and amplitude modulations). The following main processing steps consist of the removal of the maternal ECG by blind source separation, the enhancement of the fetal ECG and identification of the fetal QRS complexes. Main processing is designed to be robust to the high-amplitude motion artifacts that corrupt the acquisition. The obtained denoising system was compared with the benchmark algorithm both on semi-simulated and on real data. The performance, quantified by means of sensitivity, F1-score and root-mean-square error metrics, outperforms the performance obtained with the original method available in the literature. This result proves that the design of a dedicated processing system based on the signal characteristics is necessary for reliable and accurate estimation of the fHR using dry, textile electrodes.


Asunto(s)
Frecuencia Cardíaca Fetal , Procesamiento de Señales Asistido por Computador , Algoritmos , Artefactos , Electrocardiografía , Electrodos , Femenino , Humanos , Embarazo
6.
BMC Pregnancy Childbirth ; 20(1): 215, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32293330

RESUMEN

BACKGROUND: Twin pregnancy is associated with increased perinatal mortality. Close foetal monitoring is therefore warranted. Doppler Ultrasound cardiotocography is currently the only available method to monitor both individual foetuses. Unfortunately, the performance measures of this method are poor and erroneous monitoring of the same twin with both transducers may occur, leaving the second twin unmonitored. In this study we aimed to determine the feasibility of monitoring both foetuses simultaneously in twin gestation by means of non-invasive foetal electrocardiography (NI-fECG), using an electrode patch on the maternal abdomen. METHODS: A NI-fECG recording was performed at 25 + 3 weeks of gestation on a multiparous woman pregnant with dichorionic diamniotic twins. An electrode patch consisting of eight adhesive electrodes was applied on the maternal abdomen, yielding six channels of bipolar electrophysiological measurements. The output was digitized and stored for offline processing. The recorded signals were preprocessed by suppression of high-frequency noise, baseline wander, and powerline interference. Secondly, the maternal ECG was subtracted and segmentation into individual ECG complexes was performed. Finally, ensemble averaging of these individual ECG complexes was performed to suppress interferences. RESULTS: Six different recordings were obtained from each of the six recording channels. Depending on the orientation and distance of the fetal heart with respect to each electrode, a distinction could be made between each fetus based on the morphology of the signals. Yielding of the fetal ECGs was performed manually based on the QRS complexes of each fetus. CONCLUSION: NI-fECG with multiple electrodes allows for monitoring of the fetal heart rate and ECG of both individual fetuses in twin pregnancies.


Asunto(s)
Electrocardiografía/métodos , Monitoreo Fetal/métodos , Frecuencia Cardíaca Fetal , Embarazo Gemelar , Adulto , Electrodos , Estudios de Factibilidad , Femenino , Humanos , Países Bajos , Embarazo , Atención Prenatal/métodos , Procesamiento de Señales Asistido por Computador
7.
Acta Obstet Gynecol Scand ; 99(10): 1387-1395, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32306380

RESUMEN

INTRODUCTION: Doppler ultrasound cardiotocography is a non-invasive alternative that, despite its poor specificity, is often first choice for intrapartum monitoring. Doppler ultrasound suffers from signal loss due to fetal movements and is negatively correlated with maternal body mass index (BMI). Reported accuracy of fetal heart rate monitoring by Doppler ultrasound varies between 10.6 and 14.3 bpm and reliability between 62.4% and 73%. The fetal scalp electrode (FSE) is considered the reference standard for fetal monitoring but can only be applied after membranes have ruptured with sufficient cervical dilatation and is sometimes contra-indicated. A non-invasive alternative that overcomes the shortcomings of Doppler ultrasound, providing reliable information on fetal heart rate, could be the answer. Non-invasive fetal electrocardiography (NI-fECG) uses a wireless electrode patch on the maternal abdomen to obtain both fetal and maternal heart rate signals as well as an electrohysterogram. We aimed to validate a wireless NI-fECG device for intrapartum monitoring in term singleton pregnancies, by comparison with the FSE. MATERIAL AND METHODS: We performed a multicenter cross-sectional observational study at labor wards of 6 hospitals located in the Netherlands, Belgium, and Spain. Laboring women with a healthy singleton fetus in cephalic presentation and gestational age between 36 and 42 weeks were included. Participants received an abdominal electrode patch and FSE after written informed consent. Accuracy, reliability, and success rate of fetal heart rate readings were determined, using FSE as reference standard. Analysis was performed for the total population and measurement period as well as separated by labor stage and BMI class (≤30 and >30 kg/m2 ). RESULTS: We included a total of 125 women. Simultaneous registrations with NI-fECG and FSE were available in 103 women. Overall accuracy is -1.46 bpm and overall reliability 86.84%. Overall success rate of the NI-fECG is around 90% for the total population as well as for both BMI subgroups. Success rate dropped to 63% during second stage of labor, similar results are found when looking at the separate BMI groups. CONCLUSIONS: Performance measures of the NI-fECG device are good in the overall group and the separate BMI groups. Compared with Doppler ultrasound performance measures from the literature, NI-fECG is a more accurate alternative. Especially, when women have a higher BMI, NI-fECG performs well, resembling FSE performance measures.


Asunto(s)
Cardiotocografía/instrumentación , Frecuencia Cardíaca Fetal , Tecnología Inalámbrica , Adulto , Índice de Masa Corporal , Cardiotocografía/métodos , Estudios Transversales , Electrodos , Femenino , Humanos , Embarazo , Estudios Prospectivos , Reproducibilidad de los Resultados
8.
Sensors (Basel) ; 20(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872470

RESUMEN

Surface electromyogram (EMG) is a noninvasive measure of muscle electrical activity and has been widely used in a variety of applications. When recorded from the trunk, surface EMG can be contaminated by the cardiac electrical activity, i.e., the electrocardiogram (ECG). ECG may distort the desired EMG signal, complicating the extraction of reliable information from the trunk EMG. Several methods are available for ECG removal from the trunk EMG, but a comparative assessment of the performance of these methods is lacking, limiting the possibility of selecting a suitable method for specific applications. The aim of the present study is therefore to review and compare the performance of different ECG removal methods from the trunk EMG. To this end, a synthetic dataset was generated by combining in vivo EMG signals recorded on the biceps brachii and healthy or dysrhythmia ECG data from the Physionet database with a predefined signal-to-noise ratio. Gating, high-pass filtering, template subtraction, wavelet transform, adaptive filtering, and blind source separation were implemented for ECG removal. A robust measure of Kurtosis, i.e., KR2 and two EMG features, the average rectified value (ARV), and mean frequency (MF), were then calculated from the processed EMG signals and compared with the EMG before mixing. Our results indicate template subtraction to produce the lowest root mean square error in both ARV and MF, providing useful insight for the selection of a suitable ECG removal method.


Asunto(s)
Algoritmos , Electrocardiografía , Electromiografía , Procesamiento de Señales Asistido por Computador , Artefactos , Humanos , Torso , Análisis de Ondículas
9.
Acta Obstet Gynecol Scand ; 98(9): 1207-1217, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31081113

RESUMEN

The second Signal Processing and Monitoring in Labor workshop gathered researchers who utilize promising new research strategies and initiatives to tackle the challenges of intrapartum fetal monitoring. The workshop included a series of lectures and discussions focusing on: new algorithms and techniques for cardiotocogoraphy (CTG) and electrocardiogram acquisition and analyses; the results of a CTG evaluation challenge comparing state-of-the-art computerized methods and visual interpretation for the detection of arterial cord pH <7.05 at birth; the lack of consensus about the role of intrapartum acidemia in the etiology of fetal brain injury; the differences between methods for CTG analysis "mimicking" expert clinicians and those derived from "data-driven" analyses; a critical review of the results from two randomized controlled trials testing the former in clinical practice; and relevant insights from modern physiology-based studies. We concluded that the automated algorithms performed comparably to each other and to clinical assessment of the CTG. However, the sensitivity and specificity urgently need to be improved (both computerized and visual assessment). Data-driven CTG evaluation requires further work with large multicenter datasets based on well-defined labor outcomes. And before first tests in the clinic, there are important lessons to be learnt from clinical trials that tested automated algorithms mimicking expert CTG interpretation. In addition, transabdominal fetal electrocardiogram monitoring provides reliable CTG traces and variability estimates; and fetal electrocardiogram waveform analysis is subject to promising new research. There is a clear need for close collaboration between computing and clinical experts. We believe that progress will be possible with multidisciplinary collaborative research.


Asunto(s)
Algoritmos , Monitoreo Fetal/métodos , Acidosis/diagnóstico , Cardiotocografía/métodos , Electrocardiografía/métodos , Femenino , Humanos , Embarazo , Diagnóstico Prenatal , Procesamiento de Señales Asistido por Computador , Reino Unido
10.
Sensors (Basel) ; 19(5)2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857218

RESUMEN

Fetal heart rate (fHR) monitoring using Doppler Ultrasound (US) is a standard method to assess fetal health before and during labor. Typically, an US transducer is positioned on the maternal abdomen and directed towards the fetal heart. Due to fetal movement or displacement of the transducer, the relative fetal heart location (fHL) with respect to the US transducer can change, leading to frequent periods of signal loss. Consequently, frequent repositioning of the US transducer is required, which is a cumbersome task affecting clinical workflow. In this research, a new flexible US transducer array is proposed which allows for measuring the fHR independently of the fHL. In addition, a method for dynamic adaptation of the transmission power of this array is introduced with the aim of reducing the total acoustic dose transmitted to the fetus and the associated power consumption, which is an important requirement for application in an ambulatory setting. The method is evaluated using an in-vitro setup of a beating chicken heart. We demonstrate that the signal quality of the Doppler signal acquired with the proposed method is comparable to that of a standard, clinical US transducer. At the same time, our transducer array is able to measure the fHR for varying fHL while only using 50% of the total transmission power of standard, clinical US transducers.

11.
Sensors (Basel) ; 19(3)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736395

RESUMEN

Long-term heart rate (HR) monitoring by wrist-worn photoplethysmograph (PPG) sensors enables the assessment of health conditions during daily life with high user comfort. However, PPG signals are vulnerable to motion artifacts (MAs), which significantly affect the accuracy of estimated physiological parameters such as HR. This paper proposes a novel modular algorithm framework for MA removal based on different wavelengths for wrist-worn PPG sensors. The framework uses a green PPG signal for HR monitoring and an infrared PPG signal as the motion reference. The proposed framework includes four main steps: motion detection, motion removal using continuous wavelet transform, approximate HR estimation and signal reconstruction. The proposed algorithm is evaluated against an electrocardiogram (ECG) in terms of HR error for a dataset of 6 healthy subjects performing 21 types of motion. The proposed MA removal method reduced the average error in HR estimation from 4.3, 3.0 and 3.8 bpm to 0.6, 1.0 and 2.1 bpm in periodic, random, and continuous non-periodic motion situations, respectively.

12.
Sensors (Basel) ; 17(5)2017 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-28468255

RESUMEN

Background: Coaches in elite swimming carefully design the training programs of their swimmers and are keen on achieving strict adherence to those programs by their athletes. At present, coaches usually monitor the compliance of their swimmers to the training program with a stopwatch. However, this measurement clearly limits the monitoring possibilities and is subject to human error. Therefore, the present study was designed to examine the reliability and practical usefulness of tri-axial accelerometers for monitoring lap time, stroke count and stroke rate in swimming. Methods: In the first part of the study, a 1200 m warm-up swimming routine was measured in 13 elite swimmers using tri-axial accelerometers and synchronized video recordings. Reliability was determined using the typical error of measurement (TEM) as well as a Bland-Altman analysis. In the second part, training compliance both within and between carefully prescribed training sessions was assessed in four swimmers in order to determine the practical usefulness of the adopted accelerometric approach. In these sessions, targets were set for lap time and stroke count by the coach. Results: The results indicated high reliability for lap time (TEM = 0.26 s, bias = 0.74 [0.56 0.91] with limits of agreement (LoA) from -1.20 [-1.50 -0.90] to 2.70 [2.40 3.00]), stroke count (TEM 0.73 strokes, bias = 0.46 [0.32 0.60] with LoA from -1.70 [-1.94 -1.46] to 2.60 [2.36 2.84]) and stroke rate (TEM 0.72 str∙min-1, bias = -0.13 [-0.20 -0.06] with LoA from -2.20 [-2.32 -2.08] to 1.90 [1.78 2.02]), while the results for the monitoring of training compliance demonstrated the practical usefulness of our approach in daily swimming training. Conclusions: The daily training of elite swimmers can be accurately and reliably monitored using tri-axial accelerometers. They provide the coach with more useful information to guide and control the training process than hand-clocked times.


Asunto(s)
Natación , Acelerometría , Atletas , Humanos , Reproducibilidad de los Resultados , Grabación en Video
13.
Pediatr Res ; 79(6): 907-15, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26866904

RESUMEN

BACKGROUND: Current methods for assessing perinatal hypoxic conditions did not improve infant outcomes. Various waveform-based and interval-based ECG markers have been suggested, but not directly compared. We compare performance of ECG markers in a standardized ovine model for fetal hypoxia. METHODS: Sixty-nine fetal sheep of 0.7 gestation had ECG recorded 4 h before, during, and 4 h after a 25-min period of umbilical cord occlusion (UCO), leading to severe hypoxia. Various ECG markers were calculated, among which were heart rate (HR), HR-corrected ventricular depolarization/repolarization interval (QTc), and ST-segment analysis (STAN) episodic and baseline rise markers, analogue to clinical STAN device alarms. Performance of interval- and waveform-based ECG markers was assessed by correlating predicted and actual hypoxic/normoxic state. RESULTS: Of the markers studied, HR and QTc demonstrated high sensitivity (≥86%), specificity (≥96%), and positive predictive value (PPV) (≥86%) and detected hypoxia in ≥90% of fetuses at 4 min after UCO. In contrast, STAN episodic and baseline rise markers displayed low sensitivity (≤20%) and could not detect severe fetal hypoxia in 65 and 28% of the animals, respectively. CONCLUSION: Interval-based HR and QTc markers could assess the presence of severe hypoxia. Waveform-based STAN episodic and baseline rise markers were ineffective as markers for hypoxia.


Asunto(s)
Electrocardiografía , Hipoxia/diagnóstico , Isquemia/diagnóstico , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Frecuencia Cardíaca , Concentración de Iones de Hidrógeno , Masculino , Curva ROC , Sensibilidad y Especificidad , Ovinos , Factores de Tiempo
14.
BMC Pregnancy Childbirth ; 16: 227, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27531050

RESUMEN

BACKGROUND: The fetal anomaly ultrasound only detects 65 to 81 % of the patients with congenital heart disease, making it the most common structural fetal anomaly of which a significant part is missed during prenatal life. Therefore, we need a reliable non-invasive diagnostic method which improves the predictive value for congenital heart diseases early in pregnancy. Fetal electrocardiography could be this desired diagnostic method. There are multiple technical challenges to overcome in the conduction of the fetal electrocardiogram. In addition, interpretation is difficult due to the organisation of the fetal circulation in utero. We want to establish the normal ranges and values of the fetal electrocardiogram parameters in healthy fetuses of 18 to 24 weeks of gestation. METHODS/DESIGN: Women with an uneventful singleton pregnancy between 18 and 24 weeks of gestation are asked to participate in this prospective cohort study. A certified and experienced sonographist performs the fetal anomaly scan. Subsequently, a fetal electrocardiogram recording is performed using dedicated signal processing methods. Measurements are performed at two institutes. We will include 300 participants to determine the normal values and 95 % confidence intervals of the fetal electrocardiogram parameters in a healthy fetus. We will evaluate the fetal heart rate, segment intervals, normalised amplitude and the fetal heart axis. Three months postpartum, we will evaluate if a newborn is healthy through a questionnaire. DISCUSSION: Fetal electrocardiography could be a promising tool in the screening program for congenital heart diseases. The electrocardiogram is a depiction of the intimate relationship between the cardiac nerve conduction pathways and the structural morphology of the fetal heart, and therefore particularly suitable for the detection of secondary effects due to a congenital heart disease (hypotrophy, hypertrophy and conduction interruption).


Asunto(s)
Electrocardiografía/estadística & datos numéricos , Corazón Fetal/diagnóstico por imagen , Ultrasonografía Prenatal/estadística & datos numéricos , Adulto , Electrocardiografía/métodos , Femenino , Edad Gestacional , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/embriología , Humanos , Embarazo , Estudios Prospectivos , Valores de Referencia , Ultrasonografía Prenatal/métodos
15.
Acta Obstet Gynecol Scand ; 93(1): 93-101, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24134552

RESUMEN

OBJECTIVE: Non-invasive spectral analysis of fetal heart rate variability is a promising new field of fetal monitoring. To validate this method properly, we studied the relationship between gestational age and the influence of fetal rest-activity state on spectral estimates of fetal heart rate variability. DESIGN: Prospective longitudinal study. SETTING: Tertiary care teaching hospital. POPULATION: Forty healthy women with an uneventful singleton pregnancy. METHODS: Non-invasive fetal electrocardiogram measurements via the maternal abdomen were performed at regular intervals between 14 and 40 weeks of gestation and processed to detect beat-to-beat fetal heart rate. Simultaneous ultrasound recordings were performed to assess fetal rest-activity state. MAIN OUTCOME MEASURES: Absolute and normalized power of fetal heart rate variability in the low (0.04-0.15 Hz) and high (0.4-1.5 Hz) frequency band were obtained, using Fourier Transform. RESULTS: 14% of all measurements and 3% of the total amount of abdominal data (330 segments) was usable for spectral analysis. During 21-30 weeks of gestation, a significant increase in absolute low and high frequency power was observed. During the active state near term, absolute and normalized low frequency power were significantly higher and normalized high frequency power was significantly lower compared with the quiet state. CONCLUSIONS: The observed increase in absolute spectral estimates in preterm fetuses was probably due to increased sympathetic and parasympathetic modulation and might be a sign of autonomic development. Further improvements in signal processing are needed before this new method of fetal monitoring can be introduced in clinical practice.


Asunto(s)
Frecuencia Cardíaca Fetal/fisiología , Adulto , Electrocardiografía/métodos , Femenino , Monitoreo Fetal/métodos , Humanos , Estudios Longitudinales , Embarazo
16.
Physiol Meas ; 45(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38387047

RESUMEN

Objective.Wearable devices that measure vital signals using photoplethysmography are becoming more commonplace. To reduce battery consumption, computational complexity, memory footprint or transmission bandwidth, companies of commercial wearable technologies are often looking to minimize the sampling frequency of the measured vital signals. One such vital signal of interest is the pulse arrival time (PAT), which is an indicator of blood pressure. To leverage this non-invasive and non-intrusive measurement data for use in clinical decision making, the accuracy of obtained PAT-parameters needs to increase in lower sampling frequency recordings. The aim of this paper is to develop a new strategy to estimate PAT at sampling frequencies up to 25 Hertz.Approach.The method applies template matching to leverage the random nature of sampling time and expected change in the PAT.Main results.The algorithm was tested on a publicly available dataset from 22 healthy volunteers, under sitting, walking and running conditions. The method significantly reduces both the mean and the standard deviation of the error when going to lower sampling frequencies by an average of 16.6% and 20.2%, respectively. Looking only at the sitting position, this reduction is even larger, increasing to an average of 22.2% and 48.8%, respectively.Significance.This new method shows promise in allowing more accurate estimation of PAT even in lower frequency recordings.


Asunto(s)
Determinación de la Presión Sanguínea , Dispositivos Electrónicos Vestibles , Humanos , Determinación de la Presión Sanguínea/métodos , Presión Sanguínea/fisiología , Frecuencia Cardíaca , Fotopletismografía/métodos
17.
IEEE Trans Biomed Eng ; 71(3): 876-892, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37812543

RESUMEN

Atrial fibrillation (AF) is a prevalent clinical arrhythmia disease and is an important cause of stroke, heart failure, and sudden death. Due to the insidious onset and no obvious clinical symptoms of AF, the status of AF diagnosis and treatment is not optimal. Early AF screening or detection is essential. Internet of Things (IoT) and artificial intelligence (AI) technologies have driven the development of wearable electrocardiograph (ECG) devices used for health monitoring, which are an effective means of AF detection. The main challenges of AF analysis using ambulatory ECG include ECG signal quality assessment to select available ECG, the robust and accurate detection of QRS complex waves to monitor heart rate, and AF identification under the interference of abnormal ECG rhythm. Through ambulatory ECG measurement and intelligent detection technology, the probability of postoperative recurrence of AF can be reduced, and personalized treatment and management of patients with AF can be realized. This work describes the status of AF monitoring technology in terms of devices, algorithms, clinical applications, and future directions.


Asunto(s)
Fibrilación Atrial , Humanos , Fibrilación Atrial/diagnóstico , Inteligencia Artificial , Electrocardiografía Ambulatoria , Electrocardiografía , Frecuencia Cardíaca
18.
J Clin Med ; 13(8)2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38673715

RESUMEN

Background: Owing to the association between dysfunctional maternal autonomic regulation and pregnancy complications, assessing non-invasive features reflecting autonomic activity-e.g., heart rate variability (HRV) and the morphology of the photoplethysmography (PPG) pulse wave-may aid in tracking maternal health. However, women with early pregnancy complications typically receive medication, such as corticosteroids, and the effect of corticosteroids on maternal HRV and PPG pulse wave morphology is not well-researched. Methods: We performed a prospective, observational study assessing the effect of betamethasone (a commonly used corticosteroid) on non-invasively assessed features of autonomic regulation. Sixty-one women with an indication for betamethasone were enrolled and wore a wrist-worn PPG device for at least four days, from which five-minute measurements were selected for analysis. A baseline measurement was selected either before betamethasone administration or sufficiently thereafter (i.e., three days after the last injection). Furthermore, measurements were selected 24, 48, and 72 h after betamethasone administration. HRV features in the time domain and frequency domain and describing heart rate (HR) complexity were calculated, along with PPG morphology features. These features were compared between the different days. Results: Maternal HR was significantly higher and HRV features linked to parasympathetic activity were significantly lower 24 h after betamethasone administration. Features linked to sympathetic activity remained stable. Furthermore, based on the PPG morphology features, betamethasone appears to have a vasoconstrictive effect. Conclusions: Our results suggest that administering betamethasone affects maternal autonomic regulation and cardiovasculature. Researchers assessing maternal HRV in complicated pregnancies should schedule measurements before or sufficiently after corticosteroid administration.

19.
Physiol Meas ; 45(5)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38749433

RESUMEN

Objective.Intra-esophageal pressure (Pes) measurement is the recommended gold standard to quantify respiratory effort during sleep, but used to limited extent in clinical practice due to multiple practical drawbacks. Respiratory inductance plethysmography belts (RIP) in conjunction with oronasal airflow are the accepted substitute in polysomnographic systems (PSG) thanks to a better usability, although they are partial views on tidal volume and flow rather than true respiratory effort and are often used without calibration. In their place, the pressure variations measured non-invasively at the suprasternal notch (SSP) may provide a better measure of effort. However, this type of sensor has been validated only for respiratory events in the context of obstructive sleep apnea syndrome (OSA). We aim to provide an extensive verification of the suprasternal pressure signal against RIP belts and Pes, covering both normal breathing and respiratory events.Approach.We simultaneously acquired suprasternal (207) and esophageal pressure (20) signals along with RIP belts during a clinical PSG of 207 participants. In each signal, we detected breaths with a custom algorithm, and evaluated the SSP in terms of detection quality, breathing rate estimation, and similarity of breathing patterns against RIP and Pes. Additionally, we examined how the SSP signal may diverge from RIP and Pes in presence of respiratory events scored by a sleep technician.Main results.The SSP signal proved to be a reliable substitute for both esophageal pressure (Pes) and respiratory inductance plethysmography (RIP) in terms of breath detection, with sensitivity and positive predictive value exceeding 75%, and low error in breathing rate estimation. The SSP was also consistent with Pes (correlation of 0.72, similarity 80.8%) in patterns of increasing pressure amplitude that are common in OSA.Significance.This work provides a quantitative analysis of suprasternal pressure sensors for respiratory effort measurements.


Asunto(s)
Presión , Sueño , Humanos , Masculino , Sueño/fisiología , Femenino , Adulto , Pletismografía , Procesamiento de Señales Asistido por Computador , Respiración , Esternón/fisiología , Persona de Mediana Edad , Polisomnografía , Adulto Joven
20.
Eur J Obstet Gynecol Reprod Biol ; 295: 75-85, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340594

RESUMEN

OBJECTIVE: To assess whether artificial intelligence, inspired by clinical decision-making procedures in delivery rooms, can correctly interpret cardiotocographic tracings and distinguish between normal and pathological events. STUDY DESIGN: A method based on artificial intelligence was developed to determine whether a cardiotocogram shows a normal response of the fetal heart rate to uterine activity (UA). For a given fetus and given the UA and previous FHR, the method predicts a fetal heart rate response, under the assumption that the fetus is still in good condition and based on how that specific fetus has responded so far. We hypothesize that this method, when having only learned from fetuses born in good condition, is incapable of predicting the response of a compromised fetus or an episode of transient fetal distress. The (in)capability of the method to predict the fetal heart rate response would then yield a method that can help to assess fetal condition when the obstetrician is in doubt. Cardiotocographic data of 678 deliveries during labor were selected based on a healthy outcome just after birth. The method was trained on the cardiotocographic data of 548 fetuses of this group to learn their heart rate response. Subsequently it was evaluated on 87 fetuses, by assessing whether the method was able to predict their heart rate responses. The remaining 43 cardiotocograms were segment-by-segment annotated by three experienced gynecologists, indicating normal, suspicious, and pathological segments, while having access to the full recording and neonatal outcome. This future knowledge makes the expert annotations of a quality that is unachievable during live interpretation. RESULTS: The comparison between abnormalities detected by the method (only using past and present input) and the annotated CTG segments by gynecologists (also looking at future input) yields an area under the curve of 0.96 for the distinction between normal and pathological events in majority-voted annotations. CONCLUSION: The developed method can distinguish between normal and pathological events in near real-time, with a performance close to the agreement between three gynecologists with access to the entire CTG tracing and fetal outcome. The method has a strong potential to support clinicians in assessing fetal condition in clinical practice.


Asunto(s)
Enfermedades Fetales , Trabajo de Parto , Embarazo , Femenino , Recién Nacido , Humanos , Cardiotocografía/métodos , Inteligencia Artificial , Trabajo de Parto/fisiología , Atención Prenatal , Frecuencia Cardíaca Fetal/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda