RESUMEN
Previous work investigating the effect of rTMS of left Dorso-Lateral Prefrontal Cortex (DLPFC) on Stroop task performance reports no changes to the Stroop effect but reduced reaction times on both congruent and incongruent trials relative to sham stimulation; an effect attributed to an enhanced attentional (or task) set for colour classification. The present study tested this account by investigating whether, relative to vertex stimulation, rTMS of the left DLPFC modifies task conflict, a form of conflict that arises when task sets for colour classification and word reading compete, given that this particular type of conflict would be reduced by an enhanced task set for colour classification. Furthermore, the present study included measures of other forms of conflict present in the Stroop task (response and semantic conflict), the potential effects on which would have been hidden in previous studies employing only incongruent and congruent stimuli. Our data showed that left DLPFC stimulation had no effect on the magnitude of task conflict, nor did it affect response, semantic or overall conflict (where the null is supported by sensitive Bayes Factors in most cases). However, consistent with previous research left DLPFC stimulation had the general effect of reducing reaction times. We, therefore, show for the first time that relative to real vertex stimulation left DLPFC stimulation does not modify Stroop interference. Alternative accounts of the role of the left DLPFC in Stroop task performance in which it either modifies response thresholds or facilitates responding by keeping the correct response keys active in working memory are discussed.
Asunto(s)
Corteza Prefrontal , Semántica , Teorema de Bayes , Color , Humanos , Tiempo de Reacción , Test de StroopRESUMEN
An enduring question in selective attention research is whether we can successfully ignore an irrelevant stimulus and at what point in the stream of processing we are able to select the appropriate source of information. Using methods informed by recent research on the varieties of conflict in the Stroop task the present study provides evidence for specialized functions of regions of the frontoparietal network in processing response and semantic conflict during Stroop task performance. Specifically, we used trial types and orthogonal contrasts thought to better independently measure response and semantic conflict and we presented the trial types in pure blocks to maximize response conflict and therefore better distinguish between the conflict types. Our data indicate that the left inferior PFC plays an important role in the processing of both response and semantic (or stimulus) conflict, whilst regions of the left parietal cortex (BA40) play an accompanying role in response, but not semantic, conflict processing. Moreover, our study reports a role for the right mediodorsal thalamus in processing semantic, but not response, conflict. In none of our comparisons did we observe activity in the anterior cingulate cortex (ACC), a finding we ascribe to the use of blocked trial type presentation and one that has implications for theories of ACC function.