Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell Proteomics ; 14(10): 2630-43, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26183719

RESUMEN

Stem cell transplantation is a promising therapeutic strategy to enhance axonal regeneration after spinal cord injury. Unrestricted somatic stem cells (USSC) isolated from human umbilical cord blood is an attractive stem cell population available at GMP grade without any ethical concerns. It has been shown that USSC transplantation into acute injured rat spinal cords leads to axonal regrowth and significant locomotor recovery, yet lacking cell replacement. Instead, USSC secrete trophic factors enhancing neurite growth of primary cortical neurons in vitro. Here, we applied a functional secretome approach characterizing proteins secreted by USSC for the first time and validated candidate neurite growth promoting factors using primary cortical neurons in vitro. By mass spectrometric analysis and exhaustive bioinformatic interrogation we identified 1156 proteins representing the secretome of USSC. Using Gene Ontology we revealed that USSC secretome contains proteins involved in a number of relevant biological processes of nerve regeneration such as cell adhesion, cell motion, blood vessel formation, cytoskeleton organization and extracellular matrix organization. We found for instance that 31 well-known neurite growth promoting factors like, e.g. neuronal growth regulator 1, NDNF, SPARC, and PEDF span the whole abundance range of USSC secretome. By the means of primary cortical neurons in vitro assays we verified SPARC and PEDF as significantly involved in USSC mediated neurite growth and therewith underline their role in improved locomotor recovery after transplantation. From our data we are convinced that USSC are a valuable tool in regenerative medicine as USSC's secretome contains a comprehensive network of trophic factors supporting nerve regeneration not only by a single process but also maintained its regenerative phenotype by a multitude of relevant biological processes.


Asunto(s)
Sangre Fetal/citología , Factores de Crecimiento Nervioso/metabolismo , Células Madre/metabolismo , Axones/fisiología , Células Cultivadas , Humanos , Neuronas/metabolismo , Fenotipo , Regeneración , Trasplante de Células Madre
2.
Plant Physiol ; 165(3): 1076-1091, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24850859

RESUMEN

The key enzyme for C4 photosynthesis, Phosphoenolpyruvate Carboxylase (PEPC), evolved from nonphotosynthetic PEPC found in C3 ancestors. In all plants, PEPC is phosphorylated by Phosphoenolpyruvate Carboxylase Protein Kinase (PPCK). However, differences in the phosphorylation pattern exist among plants with these photosynthetic types, and it is still not clear if they are due to interspecies differences or depend on photosynthetic type. The genus Flaveria contains closely related C3, C3-C4 intermediate, and C4 species, which are evolutionarily young and thus well suited for comparative analysis. To characterize the evolutionary differences in PPCK between plants with C3 and C4 photosynthesis, transcriptome libraries from nine Flaveria spp. were used, and a two-member PPCK family (PPCKA and PPCKB) was identified. Sequence analysis identified a number of C3- and C4-specific residues with various occurrences in the intermediates. Quantitative analysis of transcriptome data revealed that PPCKA and PPCKB exhibit inverse diel expression patterns and that C3 and C4 Flaveria spp. differ in the expression levels of these genes. PPCKA has maximal expression levels during the day, whereas PPCKB has maximal expression during the night. Phosphorylation patterns of PEPC varied among C3 and C4 Flaveria spp. too, with PEPC from the C4 species being predominantly phosphorylated throughout the day, while in the C3 species the phosphorylation level was maintained during the entire 24 h. Since C4 Flaveria spp. evolved from C3 ancestors, this work links the evolutionary changes in sequence, PPCK expression, and phosphorylation pattern to an evolutionary phase shift of kinase activity from a C3 to a C4 mode.

3.
Biochim Biophys Acta ; 1834(12): 2843-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23994226

RESUMEN

Fragment analysis of proteins and peptides by mass spectrometry using collision-induced dissociation (CID) revealed that the pairwise generated N-terminal b- and C-terminal y-ions have different stabilities resulting in underrepresentation of b-ions. Detailed analyses of large-scale spectra databases and synthetic peptides underlined these observations and additionally showed that the fragmentation pattern depends on utilized CID regime. To investigate this underrepresentation further we systematically compared resonant excitation energy and beam-type CID facilitated on different mass spectrometer platforms: (i) quadrupole time-of-flight, (ii) linear ion trap and (iii) three-dimensional ion trap. Detailed analysis of MS/MS data from a standard tryptic protein digest revealed that b-ions are significantly underrepresented on all investigated mass spectrometers. By N-terminal acetylation of tryptic peptides we show for the first time that b-ion cyclization reaction significantly contributes to b-ion underrepresentation even on ion trap instruments and accounts for at most 16% of b-ion loss.


Asunto(s)
Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Péptidos/química , Animales , Aspergillus niger/enzimología , Proteínas Bacterianas/química , Burkholderia/enzimología , Bovinos , Proteínas Fúngicas/química , Glucosa Oxidasa/química , Lipasa/química , alfa-Cristalinas/química
4.
Artículo en Inglés | MEDLINE | ID: mdl-37054907

RESUMEN

Membrane protein and phospholipid (PL) composition changes in response to environmental cues and during infections. To achieve these, bacteria use adaptation mechanisms involving covalent modification and remodelling of the acyl chain length of PLs. However, little is known about bacterial pathways regulated by PLs. Here, we investigated proteomic changes in the biofilm of P. aeruginosa phospholipase mutant (∆plaF) with altered membrane PL composition. The results revealed profound alterations in the abundance of many biofilm-related two-component systems (TCSs), including accumulation of PprAB, a key regulator of the transition to biofilm. Furthermore, a unique phosphorylation pattern of transcriptional regulators, transporters and metabolic enzymes, as well as differential production of several proteases, in ∆plaF, indicate that PlaF-mediated virulence adaptation involves complex transcriptional and posttranscriptional response. Moreover, proteomics and biochemical assays revealed the depletion of pyoverdine-mediated iron uptake pathway proteins in ∆plaF, while proteins from alternative iron-uptake systems were accumulated. These suggest that PlaF may function as a switch between different iron-acquisition pathways. The observation that PL-acyl chain modifying and PL synthesis enzymes were overproduced in ∆plaF reveals the interconnection of degradation, synthesis and modification of PLs for proper membrane homeostasis. Although the precise mechanism by which PlaF simultaneously affects multiple pathways remains to be elucidated, we suggest that alteration of PL composition in ∆plaF plays a role for the global adaptive response in P. aeruginosa mediated by TCSs and proteases. Our study revealed the global regulation of virulence and biofilm by PlaF and suggests that targeting this enzyme may have therapeutic potential.


Asunto(s)
Hierro , Pseudomonas aeruginosa , Hierro/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Fosfolípidos/metabolismo , Proteómica
5.
MAbs ; 13(1): 1955432, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34347561

RESUMEN

Host cell proteins (HCPs) must be sufficiently cleared from recombinant biopharmaceuticals during the downstream process (DSP) to ensure product quality, purity, and patient safety. For monitoring of HCP clearance, the typical method chosen is an enzyme-linked immunosorbent assay (ELISA) using polyclonal anti-HCP antibodies obtained from an immunization campaign. This polyclonal reagent is a critical factor for functionality and confidence of the ELISA. Therefore, it is important to ensure that the pool of ELISA antibodies covers a broad spectrum of the HCPs that potentially could persist in the final drug substance. Typically, coverage is determined by gel-based approaches. Here, we present a quantitative proteomics approach combined with purification of HCPs by immunoaffinity chromatography (qIAC-MS) for assessment of ELISA coverage. The cell culture fluid (CCF) of a mock fermentation and a recombinant monoclonal antibody product were characterized in detail to investigate whether the HCPs used for immunization of animals accurately represent HCPs that are relevant to the process. Using the qIAC-MS approach, the ELISA antibody coverage was determined for mock fermentation and product CCF, as well as several different DSP intermediates. Here, the use of different controls facilitated the identification and quantification of HCPs present in the polyclonal reagent and those that nonspecifically bound to IAC material. This study successfully demonstrates that the described qIAC-MS approach is not only a suitable orthogonal method to commonly used 2D SDS-PAGE-based analysis for evaluating ELISA antibody coverage, but that it further identifies HCPs covered as well as missed by the ELISA, enabling an improved risk assessment of HCP ELISA.


Asunto(s)
Anticuerpos Monoclonales , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Células CHO , Cricetulus , Ensayo de Inmunoadsorción Enzimática , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación
6.
Cancers (Basel) ; 12(7)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610669

RESUMEN

Primary central nervous system lymphomas (PCNSL) account for approximately 2% to 3% of all primary brain tumors. Until now, neuropathological tumor tissue analysis, most frequently gained by stereotactic biopsy, is still the diagnostic gold standard. Here, we rigorously analyzed two independent patient cohorts comprising the clinical entities PCNSL (n = 47), secondary central nervous system lymphomas (SCNSL; n = 13), multiple sclerosis (MS, n = 23), glioma (n = 10), other tumors (n = 17) and tumor-free controls (n = 21) by proteomic approaches. In total, we identified more than 1220 proteins in the cerebrospinal fluid (CSF) and validated eight candidate biomarkers by a peptide-centric approach in an independent patient cohort (n = 63). Thus, we obtained excellent diagnostic accuracy for the stratification between PCNSL, MS and glioma patients as well as tumor-free controls for three peptides originating from the three proteins VSIG4, GPNMB4 and APOC2. The combination of all three biomarker candidates resulted in diagnostic accuracy with an area under the curve (AUC) of 0.901 (PCNSL vs. MS), AUC of 0.953 (PCNSL vs. glioma) and AUC 0.850 (PCNSL vs. tumor-free control). In summary, the determination of VSIG4, GPNMB4 and APOC2 in CSF as novel biomarkers for supporting the diagnosis of PCNSL is suggested.

7.
Sci Rep ; 9(1): 19448, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31857603

RESUMEN

The prediction of protein localization, such as in the extracellular space, from high-throughput data is essential for functional downstream inference. It is well accepted that some secreted proteins go through the classic endoplasmic reticulum-Golgi pathway with the guidance of a signal peptide. However, a large number of proteins have been found to reach the extracellular space by following unconventional secretory pathways. There remains a demand for reliable prediction of unconventional protein secretion (UPS). Here, we present OutCyte, a fast and accurate tool for the prediction of UPS, which for the first time has been built upon experimentally determined UPS proteins. OutCyte mediates the prediction of protein secretion in two steps: first, proteins with N-terminal signals are accurately filtered out; second, proteins without N-terminal signals are classified as UPS or intracellular proteins based on physicochemical features directly generated from their amino acid sequences. We are convinced that OutCyte will play a relevant role in the annotation of experimental data and will therefore contribute to further characterization of the extracellular nature of proteins by considering the commonly neglected UPS proteins.OutCyte has been implemented as a web server at www.outcyte.com.


Asunto(s)
Metabolómica/métodos , Proteoma/metabolismo , Proteómica/métodos , Vías Secretoras , Conjuntos de Datos como Asunto , Humanos , Transporte de Proteínas , Programas Informáticos
8.
Biotechnol Prog ; 35(3): e2788, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30767403

RESUMEN

For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process-related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP-ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb-production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up- and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in-process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Células CHO/metabolismo , Proteínas/química , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Células CHO/química , Técnicas de Cultivo de Célula , Cricetinae , Cricetulus , Electroforesis en Gel Bidimensional , Ensayo de Inmunoadsorción Enzimática , Fermentación , Espectrometría de Masas/métodos , Proteómica
9.
Biochim Biophys Acta Proteins Proteom ; 1867(12): 140237, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31202002

RESUMEN

Proteins are released from cells by different secretory pathways. The secretory pathway via the ER-Golgi route - realized by a signal sequence - is referred to as "classical secretion". In contrast, alternative secretory pathways were summarized as "unconventional protein secretion". Until now, unconventional protein secretion was lacking attention due to the absence of detailed mechanistic insight and limited experimental access. However, there is a growing number of experimental data showing that a large proportion of secreted proteins is released by these alternative routes. Secretomics - the analysis of all secreted proteins of a cell population - offers the opportunity to gain more functional insight into unconventional protein secretion. Several pitfalls in secretome analysis starting with the analyzed cell model and sample preparation to data analysis have to be considered for detailed characterization of the secretome. Here, we highlight the investigation of secretomes by quantitative LC-MS/MS analysis and discuss pitfalls and opportunities in the characterization of unconventionally secreted proteins by secretome analysis.


Asunto(s)
Proteoma/metabolismo , Vías Secretoras , Animales , Humanos , Proteínas/metabolismo
10.
Biochim Biophys Acta Proteins Proteom ; 1867(4): 434-441, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30716505

RESUMEN

As an essential cellular component of the bone marrow (BM) microenvironment mesenchymal stromal cells (MSC) play a pivotal role for the physiological regulation of hematopoiesis, in particular through the secretion of cytokines and chemokines. Mass spectrometry (MS) facilitates the identification and quantification of a large amount of secreted proteins (secretome), but can be hampered by the false-positive identification of contaminating proteins released from dead cells or derived from cell medium. To reduce the likelihood of contaminations we applied an approach combining secretome and proteome analysis to characterize the physiological secretome of BM derived human MSC. Our analysis revealed a secretome consisting of 315 proteins. Pathway analyses of these proteins revealed a high abundance of proteins related to cell growth and/or maintenance, signal transduction and cell communication thereby representing key biological functions of BM derived MSC on protein level. Within the MSC secretome we identified several cytokines and growth factors such as VEGFC, TGF-ß1, TGF-ß2 and GDF6 which are known to be involved in the physiological regulation of hematopoiesis. By comparing the peptide patterns of secretomes and cell lysates 17 proteins were identified as candidates for proteolytic processing. Taken together, our combined MS work-flow reduced the likelihood of contaminations and enabled us to carve out a specific overview about the composition of the secretome from human BM derived MSC. This methodological approach and the specific secretome signature of BM derived MSC may serve as basis for future comparative analyses of the interplay of MSC and HSPC in patients with hematological malignancies.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Médula Ósea , Humanos , Persona de Mediana Edad , Proteoma
11.
Oncotarget ; 8(66): 110118-110132, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29299134

RESUMEN

Primary central nervous system lymphomas (PCNSLs) are mature B-cell lymphomas confined to the central nervous system (CNS). Blood-brain barrier (BBB) dysfunction drastically alters the cerebrospinal fluid (CSF) proteome in PCNSL patients. To reveal the interaction of PCNSL tumors with CNS structures and the vasculature, we conducted a whole-proteome analysis of CSF from PCNSL patients (n = 17 at initial diagnosis) and tumor-free controls (n = 10) using label-free quantitative mass spectrometry. We identified 601 proteins in the CSF proteome using a one-step approach without further prefractionation, and quantified 438 proteins in detail using the Hi-N method. An immunoassay revealed that 70% of the patients in our unselected PCNSL patient cohort had BBB dysfunction. Correlation analysis indicated that 127 (30%) of the quantified proteins were likely increased in PCSNL patients due to BBB dysfunction. After the exclusion of these proteins, 66 were found to differ in abundance (fold-change > 2.0, p < 0.05) between PCNSL and control CSF proteomes, and most of those were associated with the CNS. These data also provide the first evidence that proteomic changes in CSF from PCNSL patients are mainly associated with protein ectodomain shedding, and that shedding of human leukocyte antigen class 2 proteins is a mechanism of tumor-cell immune evasion.

12.
J Invest Dermatol ; 135(8): 1954-1968, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25815425

RESUMEN

Most molecular hallmarks of cellular senescence have been identified in studies of cells aged in vitro by driving them into replicative or stress-induced senescence. Comparatively, less is known about the characteristic features of cells that have aged in vivo. Here we provide a systematic molecular analysis of normal human dermal fibroblasts (NHDFs) that were isolated from intrinsically aged human skin of young versus middle aged versus old donors. Intrinsically aged NHDFs in culture exhibited more frequently nuclear foci positive for p53 binding protein 1 and promyelocytic leukemia protein reminiscent of 'DNA segments with chromatin alterations reinforcing senescence (DNA-SCARS)'. Formation of such foci was neither accompanied by increased DNA double strand breaks, nor decreased cell viability, nor telomere shortening. However, it was associated with the development of a secretory phenotype, indicating incipient cell senescence. By quantitative analysis of the entire secretome present in conditioned cell culture supernatant, combined with a multiplex cytokine determination, we identified 998 proteins secreted by intrinsically aged NHDFs in culture. Seventy of these proteins exhibited an age-dependent secretion pattern and were accordingly denoted 'skin aging-associated secreted proteins (SAASP)'. Systematic comparison of SAASP with the classical senescence-associated secretory phenotype (SASP) revealed that matrix degradation as well as proinflammatory processes are common aspects of both conditions. However, secretion of 27 proteins involved in the biological processes of 'metabolism' and 'adherens junction interactions' was unique for NHDFs isolated from intrinsically aged skin. In conclusion, fibroblasts isolated from intrinsically aged skin exhibit some, but not all, molecular hallmarks of cellular senescence. Most importantly, they secrete a unique pattern of proteins that is distinct from the canonical SASP and might reflect specific processes of skin aging.


Asunto(s)
Dermis/metabolismo , Fibroblastos/metabolismo , Proteínas/metabolismo , Envejecimiento de la Piel/patología , Adolescente , Adulto , Anciano , Células Cultivadas , Senescencia Celular/genética , ADN/genética , Dermis/patología , Femenino , Fibroblastos/patología , Humanos , Técnicas In Vitro , Persona de Mediana Edad , Fenotipo , Piel/metabolismo , Piel/patología , Envejecimiento de la Piel/genética , Telómero/genética , Adulto Joven
13.
Aging (Albany NY) ; 6(10): 856-78, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25411231

RESUMEN

We analyzed an ex vivo model of in situ aged human dermal fibroblasts, obtained from 15 adult healthy donors from three different age groups using an unbiased quantitative proteome-wide approach applying label-free mass spectrometry. Thereby, we identified 2409 proteins, including 43 proteins with an age-associated abundance change. Most of the differentially abundant proteins have not been described in the context of fibroblasts' aging before, but the deduced biological processes confirmed known hallmarks of aging and led to a consistent picture of eight biological categories involved in fibroblast aging, namely proteostasis, cell cycle and proliferation, development and differentiation, cell death, cell organization and cytoskeleton, response to stress, cell communication and signal transduction, as well as RNA metabolism and translation. The exhaustive analysis of protein and mRNA data revealed that 77 % of the age-associated proteins were not linked to expression changes of the corresponding transcripts. This is in line with an associated miRNA study and led us to the conclusion that most of the age-associated alterations detected at the proteome level are likely caused post-transcriptionally rather than by differential gene expression. In summary, our findings led to the characterization of novel proteins potentially associated with fibroblast aging and revealed that primary cultures of in situ aged fibroblasts are characterized by moderate age-related proteomic changes comprising the multifactorial process of aging.


Asunto(s)
Envejecimiento/fisiología , Fibroblastos/citología , Fibroblastos/metabolismo , Transcriptoma , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Técnicas In Vitro , Espectrometría de Masas , MicroARNs , Persona de Mediana Edad , Fenotipo , Proteómica , Adulto Joven
14.
Methods Mol Biol ; 893: 241-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22665305

RESUMEN

A label-free solution basing on a highly reproducible and stable LC-MS/MS system allows quantitative proteome analyses. Due to nonlabeling approach, the label-free method has the potential to measure samples from clinical specimen monitoring and comparing thousands of proteins. The presented label-free workflow includes in-solution digest, LC-MS analyses, data evaluation by the means of Progenesis™ software, and validation of the differential proteins. We successfully applied this workflow in a proteomics study analyzing the human lung carcinoma cell line A549 treated with transforming growth factor beta 1, a cell culture model of lung fibrosis. The differential analysis of only 1 µg protein per sample led to 202 significantly regulated proteins.


Asunto(s)
Proteoma/metabolismo , Extractos Celulares/química , Extractos Celulares/aislamiento & purificación , Línea Celular Tumoral , Cromatografía en Gel , Cromatografía Líquida de Alta Presión , Interpretación Estadística de Datos , Electroforesis en Gel Bidimensional , Humanos , Neoplasias Pulmonares , Mapeo Peptídico , Proteolisis , Proteoma/química , Proteoma/aislamiento & purificación , Proteómica , Programas Informáticos , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem , Factor de Crecimiento Transformador beta1/fisiología , Tripsina/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda