Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Ecol Evol ; 13(7): e10282, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37484933

RESUMEN

Animal movement is the mechanism connecting landscapes to fitness, and understanding variation in seasonal animal movements has benefited from the analysis and categorization of animal displacement. However, seasonal movement patterns can defy classification when movements are highly variable. Hidden Markov movement models (HMMs) are a class of latent-state models well-suited to modeling movement data. Here, we used HMMs to assess seasonal patterns of variation in the movement of pronghorn (Antilocapra americana), a species known for variable seasonal movements that challenge analytical approaches, while using a population of mule deer (Odocoileus hemionus), for whom seasonal movements are well-documented, as a comparison. We used population-level HMMs in a Bayesian framework to estimate a seasonal trend in the daily probability of transitioning between a short-distance local movement state and a long-distance movement state. The estimated seasonal patterns of movements in mule deer closely aligned with prior work based on indices of animal displacement: a short period of long-distance movements in the fall season and again in the spring, consistent with migrations to and from seasonal ranges. We found seasonal movement patterns for pronghorn were more variable, as a period of long-distance movements in the fall was followed by a winter period in which pronghorn were much more likely to further initiate and remain in a long-distance movement pattern compared with the movement patterns of mule deer. Overall, pronghorn were simply more likely to be in a long-distance movement pattern throughout the year. Hidden Markov movement models provide inference on seasonal movements similar to other methods, while providing a robust framework to understand movement patterns on shorter timescales and for more challenging movement patterns. Hidden Markov movement models can allow a rigorous assessment of the drivers of changes in movement patterns such as extreme weather events and land development, important for management and conservation.

2.
Ecol Evol ; 13(1): e9687, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36644697

RESUMEN

Migration is a critical behavioral strategy necessary for population persistence and ecosystem functioning, but migration routes have been increasingly disrupted by anthropogenic activities, including energy development. Wind energy is the world's fastest growing source of electricity and represents an important alternative to hydrocarbon extraction, but its effects on migratory species beyond birds and bats are not well understood. We evaluated the effects of wind-energy development on pronghorn migration, including behavior and habitat selection, to assess potential effects on connectivity and other functional benefits including stopovers. We monitored GPS-collared female pronghorn from 2010 to 2012 and 2018 to 2020 in south-central Wyoming, USA, an area with multiple wind-energy facilities in various stages of development and operation. Across all time periods, we collected 286 migration sequences from 117 individuals, including 121 spring migrations, 123 fall migrations, and 42 facultative winter migrations. While individuals continued to migrate through wind-energy facilities, pronghorn made important behavioral adjustments relative to turbines during migration. These included avoiding turbines when selecting stopover sites in spring and winter, selecting areas farther from turbines at a small scale in spring and winter, moving more quickly near turbines in spring (although pronghorn moved more slowly near turbines in the fall), and reducing fidelity to migration routes relative to wind turbines under construction in both spring and fall. For example, an increase in distance to turbine from 0 to 1 km translated to a 33% and 300% increase in the relative probability of selection for stopover sites in spring and winter, respectively. The behavioral adjustments pronghorn made relative to wind turbines could reduce the functional benefits of their migration, such as foraging success or the availability of specific routes, over the long term.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda