Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2310052120, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38165932

RESUMEN

Cross-ecosystem subsidies are critical to ecosystem structure and function, especially in recipient ecosystems where they are the primary source of organic matter to the food web. Subsidies are indicative of processes connecting ecosystems and can couple ecological dynamics across system boundaries. However, the degree to which such flows can induce cross-ecosystem cascades of spatial synchrony, the tendency for system fluctuations to be correlated across locations, is not well understood. Synchrony has destabilizing effects on ecosystems, adding to the importance of understanding spatiotemporal patterns of synchrony transmission. In order to understand whether and how spatial synchrony cascades across the marine-terrestrial boundary via resource subsidies, we studied the relationship between giant kelp forests on rocky nearshore reefs and sandy beach ecosystems that receive resource subsidies in the form of kelp wrack (detritus). We found that synchrony cascades from rocky reefs to sandy beaches, with spatiotemporal patterns mediated by fluctuations in live kelp biomass, wave action, and beach width. Moreover, wrack deposition synchronized local abundances of shorebirds that move among beaches seeking to forage on wrack-associated invertebrates, demonstrating that synchrony due to subsidies propagates across trophic levels in the recipient ecosystem. Synchronizing resource subsidies likely play an underappreciated role in the spatiotemporal structure, functioning, and stability of ecosystems.


Asunto(s)
Ecosistema , Kelp , Animales , Cadena Alimentaria , Invertebrados , Biomasa , Bosques
2.
Glob Chang Biol ; 30(1): e17017, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37933478

RESUMEN

Important clues about the ecological effects of climate change can arise from understanding the influence of other Earth-system processes on ecosystem dynamics but few studies span the inter-decadal timescales required. We, therefore, examined how variation in annual weather patterns associated with the North Atlantic Oscillation (NAO) over four decades was linked to synchrony and stability in a metacommunity of stream invertebrates across multiple, contrasting headwaters in central Wales (UK). Prolonged warmer and wetter conditions during positive NAO winters appeared to synchronize variations in population and community composition among and within streams thereby reducing stability across levels of ecological organization. This climatically mediated synchronization occurred in all streams irrespective of acid-base status and land use, but was weaker where invertebrate communities were more functionally diverse. Wavelet linear models indicated that variation in the NAO explained up to 50% of overall synchrony in species abundances at a timescale of 4-6 years. The NAO appeared to affect ecological dynamics through local variations in temperature, precipitation and discharge, but increasing hydrochemical variability within sites during wetter winters might have contributed. Our findings illustrate how large-scale climatic fluctuations generated over the North Atlantic can affect population persistence and dynamics in inland freshwater ecosystems in ways that transcend local catchment character. Protecting and restoring functional diversity in stream communities might increase their stability against warmer, wetter conditions that are analogues of ongoing climate change. Catchment management could also dampen impacts and provide options for climate change adaptation.


Asunto(s)
Ecosistema , Invertebrados , Animales , Tiempo (Meteorología) , Temperatura , Estaciones del Año
3.
Am Nat ; 202(4): 399-412, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792915

RESUMEN

AbstractPopulation spatial synchrony-the tendency for temporal population fluctuations to be correlated across locations-is common and important to metapopulation stability and persistence. One common cause of spatial synchrony, termed the Moran effect, occurs when populations respond to environmental fluctuations, such as weather, that are correlated over space. Although the degree of spatial synchrony in environmental fluctuations can differ between seasons and different population processes occur in different seasons, the impact on population spatial synchrony is uncertain because prior work has largely assumed that the spatial synchrony of environmental fluctuations and their effect on populations are consistent over annual sampling intervals. We used theoretical models to examine how seasonality in population processes and the spatial synchrony of environmental drivers affect population spatial synchrony. We found that population spatial synchrony can depend not only on the spatial synchrony of environmental drivers but also on the degree to which environmental fluctuations are correlated across seasons, locally, and across space. Moreover, measurements of synchrony from "snapshot" population censuses may not accurately reflect synchrony during other parts of the year. Together, these results show that neglecting seasonality in environmental conditions and population processes is consequential for understanding population spatial synchrony and its driving mechanisms.


Asunto(s)
Modelos Teóricos , Tiempo (Meteorología) , Dinámica Poblacional , Estaciones del Año , Ecosistema
4.
Ecol Lett ; 25(8): 1854-1868, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35771209

RESUMEN

Spatial synchrony is a ubiquitous and important feature of population dynamics, but many aspects of this phenomenon are not well understood. In particular, it is largely unknown how multiple environmental drivers interact to determine synchrony via Moran effects, and how these impacts vary across spatial and temporal scales. Using new wavelet statistical techniques, we characterised synchrony in populations of giant kelp Macrocystis pyrifera, a widely distributed marine foundation species, and related synchrony to variation in oceanographic conditions across 33 years (1987-2019) and >900 km of coastline in California, USA. We discovered that disturbance (storm-driven waves) and resources (seawater nutrients)-underpinned by climatic variability-act individually and interactively to produce synchrony in giant kelp across geography and timescales. Our findings demonstrate that understanding and predicting synchrony, and thus the regional stability of populations, relies on resolving the synergistic and antagonistic Moran effects of multiple environmental drivers acting on different timescales.


Asunto(s)
Kelp , Macrocystis , Ecosistema , Bosques , Nutrientes
5.
Ecol Lett ; 25(5): 1189-1201, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35246946

RESUMEN

Spatial synchrony may be tail-dependent, that is, stronger when populations are abundant than scarce, or vice-versa. Here, 'tail-dependent' follows from distributions having a lower tail consisting of relatively low values and an upper tail of relatively high values. We present a general theory of how the distribution and correlation structure of an environmental driver translates into tail-dependent spatial synchrony through a non-linear response, and examine empirical evidence for theoretical predictions in giant kelp along the California coastline. In sheltered areas, kelp declines synchronously (lower-tail dependence) when waves are relatively intense, because waves below a certain height do little damage to kelp. Conversely, in exposed areas, kelp is synchronised primarily by periods of calmness that cause shared recovery (upper-tail dependence). We find evidence for geographies of tail dependence in synchrony, which helps structure regional population resilience: areas where population declines are asynchronous may be more resilient to disturbance because remnant populations facilitate reestablishment.


Asunto(s)
Geraniaceae , Kelp , Macrocystis , Ecosistema , Geografía
6.
Ecol Appl ; 32(3): e2538, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35044021

RESUMEN

Studies of biological invasions at the macroscale or across multiple scales can provide important insights for management, particularly when localized information about invasion dynamics or environmental contexts is unavailable. In this study, we performed a macroscale analysis of the roles of invasion drivers on the local scale dynamics of a high-profile pest, Lymantria dispar dispar L., with the purpose of improving the prioritization of vulnerable areas for treatment. Specifically, we assessed the relative effects of various anthropogenic and environmental variables on the establishment rate of 8010 quadrats at a localized scale (5 × 5 km) across the entire L. dispar transition zone (the area encompassing the leading population edge, currently from Minnesota to North Carolina). We calculated the number of years from first detection of L. dispar in a quadrat to the year when probability of establishment of L. dispar was greater than 99% (i.e., waiting time to establishment after first detection). To assess the effects of environmental and anthropogenic variables on each quadrat's waiting time to establishment, we performed linear mixed-effects regression models for the full transition zone and three subregions within the zone. Seasonal temperatures were found to be the primary drivers of local establishment rates. Winter temperatures had the strongest effects, especially in the northern parts of the transition zone. Furthermore, the effects of some factors on waiting times to establishment varied across subregions. Our findings contribute to identifying especially vulnerable areas to further L. dispar spread and informing region-specific criteria by invasion managers for the prioritization of areas for treatment.


Asunto(s)
Mariposas Nocturnas , Animales , Minnesota , North Carolina
7.
Ecol Lett ; 24(2): 337-347, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33314559

RESUMEN

Population cycles are fundamentally linked with spatial synchrony, the prevailing paradigm being that populations with cyclic dynamics are easily synchronised. That is, population cycles help give rise to spatial synchrony. Here we demonstrate this process can work in reverse, with synchrony causing population cycles. We show that timescale-specific environmental effects, by synchronising local population dynamics on certain timescales only, cause major population cycles over large areas in white-tailed deer. An important aspect of the new mechanism is specificity of synchronising effects to certain timescales, which causes local dynamics to sum across space to a substantial cycle on those timescales. We also demonstrate, to our knowledge for the first time, that synchrony can be transmitted not only from environmental drivers to populations (deer), but also from there to human systems (deer-vehicle collisions). Because synchrony of drivers may be altered by climate change, changes to population cycles may arise via our mechanism.


Asunto(s)
Ciervos , Mariposas Nocturnas , Animales , Cambio Climático , Humanos , Dinámica Poblacional
8.
Ecol Appl ; 31(5): e02321, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33655574

RESUMEN

Although different fisheries can be tightly linked to each other by human and ecosystem processes, they are often managed independently. Synchronous fluctuations among fish populations or fishery catches can destabilize ecosystems and economies, respectively, but the degree of synchrony around the world remains unclear. We analyzed 1,092 marine fisheries catch time series over 60 yr to test for the presence of coherence, a form of synchrony that allows for phase-lagged relationships. We found that nearly every fishery was coherent with at least one other fishery catch time series globally and that coherence was strongest in the northeast Atlantic, western central Pacific, and eastern Indian Ocean. Analysis of fish biomass and fishing mortality time series from these hotspots revealed that coherence in biomass or fishing mortality were both possible, though biomass coherence was more common. Most of these relationships were synchronous with no time lags, and across catches in all regions, synchrony was a better predictor of regional catch portfolio effects than catch diversity. Regions with higher synchrony had lower stability in aggregate fishery catches, which can have negative consequences for food security and economic wealth.


Asunto(s)
Ecosistema , Explotaciones Pesqueras , Animales , Biomasa , Conservación de los Recursos Naturales , Humanos , Océano Índico
9.
Proc Biol Sci ; 286(1903): 20182828, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31138079

RESUMEN

Explaining why fluctuations in abundances of spatially disjunct populations often are correlated through time is a major goal of population ecologists. We address two hypotheses receiving little to no testing in wild populations: (i) that population cycling facilitates synchronization given weak coupling among populations, and (ii) that the ability of periodic external forces to synchronize oscillating populations is a function of the mismatch in timescales (detuning) between the force and the population. Here, we apply new analytical methods to field survey data on gypsy moth outbreaks. We report that at timescales associated with gypsy moth outbreaks, spatial synchrony increased with population periodicity via phase locking. The extent to which synchrony in temperature and precipitation influenced population synchrony was associated with the degree of mismatch in dominant timescales of oscillation. Our study provides new empirical methods and rare empirical evidence that population cycling and low detuning can promote population spatial synchrony.


Asunto(s)
Mariposas Nocturnas/fisiología , Lluvia , Temperatura , Animales , Larva/crecimiento & desarrollo , Larva/fisiología , Modelos Biológicos , Mariposas Nocturnas/crecimiento & desarrollo , Dinámica Poblacional , Factores de Tiempo , Estados Unidos
10.
J Anim Ecol ; 88(3): 484-494, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30474262

RESUMEN

Taylor's law (TL), a commonly observed and applied pattern in ecology, describes variances of population densities as related to mean densities via log(variance) = log(a) + b*log(mean). Variations among datasets in the slope, b, have been associated with multiple factors of central importance in ecology, including strength of competitive interactions and demographic rates. But these associations are not transparent, and the relative importance of these and other factors for TL slope variation is poorly studied. TL is thus a ubiquitously used indicator in ecology, the understanding of which is still opaque. The goal of this study was to provide tools to help fill this gap in understanding by providing proximate determinants of TL slopes, statistical quantities that are correlated to TL slopes but are simpler than the slope itself and are more readily linked to ecological factors. Using numeric simulations and 82 multi-decadal population datasets, we here propose, test and apply two proximate statistical determinants of TL slopes which we argue can become key tools for understanding the nature and ecological causes of TL slope variation. We find that measures based on population skewness, coefficient of variation and synchrony are effective proximate determinants. We demonstrate their potential for application by using them to help explain covariation in slopes of spatial and temporal TL (two common types of TL). This study provides tools for understanding TL, and demonstrates their usefulness.


Asunto(s)
Ecología , Modelos Biológicos , Animales , Densidad de Población
11.
J Anim Ecol ; 87(4): 1058-1068, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29536534

RESUMEN

Studies of transient population dynamics have largely focused on temporal changes in dynamical behaviour, such as the transition between periods of stability and instability. This study explores a related dynamic pattern, namely transient synchrony during a 49-year period among populations of five sympatric species of forest insects that share host tree resources. The long time series allows a more comprehensive exploration of transient synchrony patterns than most previous studies. Considerable variation existed in the dynamics of individual species, ranging from periodic to aperiodic. We used time-averaged methods to investigate long-term patterns of synchrony and time-localized methods to detect transient synchrony. We investigated transient patterns of synchrony between species and related these to the species' varying density dependence structures; even species with very different density dependence exhibited at least temporary periods of synchrony. Observed periods of interspecific synchrony may arise from interactions with host trees (e.g., induced host defences), interactions with shared natural enemies or shared impacts of environmental stochasticity. The transient nature of synchrony observed here raises questions both about the identity of synchronizing mechanisms and how these mechanisms interact with the endogenous dynamics of each species. We conclude that these patterns are the result of interspecific interactions that act only temporarily to synchronize populations, after which differences in the endogenous population dynamics among the species acts to desynchronize their dynamics.


Asunto(s)
Bosques , Mariposas Nocturnas/fisiología , Animales , Hungría , Dinámica Poblacional , Estaciones del Año
12.
Ecol Lett ; 20(7): 801-814, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28547786

RESUMEN

Spatial synchrony, defined as correlated temporal fluctuations among populations, is a fundamental feature of population dynamics, but many aspects of synchrony remain poorly understood. Few studies have examined detailed geographical patterns of synchrony; instead most focus on how synchrony declines with increasing linear distance between locations, making the simplifying assumption that distance decay is isotropic. By synthesising and extending prior work, we show how geography of synchrony, a term which we use to refer to detailed spatial variation in patterns of synchrony, can be leveraged to understand ecological processes including identification of drivers of synchrony, a long-standing challenge. We focus on three main objectives: (1) showing conceptually and theoretically four mechanisms that can generate geographies of synchrony; (2) documenting complex and pronounced geographies of synchrony in two important study systems; and (3) demonstrating a variety of methods capable of revealing the geography of synchrony and, through it, underlying organism ecology. For example, we introduce a new type of network, the synchrony network, the structure of which provides ecological insight. By documenting the importance of geographies of synchrony, advancing conceptual frameworks, and demonstrating powerful methods, we aim to help elevate the geography of synchrony into a mainstream area of study and application.


Asunto(s)
Ecología , Geografía , Dinámica Poblacional
13.
Ecology ; 97(12): 3389-3401, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27912015

RESUMEN

Range expansions are a function of population growth and dispersal, and nascent populations often must overcome demographic Allee effects (positive density dependence at low population densities) driven by factors such as mate-finding failure. Given the importance of individual movement to mate finding, links between landscape structure and movement may be critical to range expansion; however, landscape effects on other factors including mortality may be equally or more important. In one of the most comprehensive investigations of the interactions of these processes to date, we combined field experiments, simulation modeling, and analysis of empirical spread patterns to investigate how landscape structure affected the spread of the gypsy moth in Virginia and West Virginia. In experiments designed to assess how landscape attributes affect mate finding, we found adult males resisted leaving forest patches and the probability of locating a pheromone source declined more rapidly over distance in non-forest matrix than in forest. We used these findings to develop individual-based simulation models of gypsy moth population dynamics and spread in complex patch-matrix landscapes. The models produced an Allee effect that strengthened with reductions in forested area, but owing more so to dispersal mortality than to effects on mate location. Predicted maximum rates of population spread grew with increases in forest area due to increasing success of long-distance transport events. Evaluations of empirical data showed relationships between spread rates and landscape structure largely consistent with model predictions. We conclude rates of spread were largely driven by long-distance dispersal events, the success of which was influenced primarily by dispersal mortality of larvae in unsuitable matrix, and that landscape effects on mate location played a secondary role. Though influences of landscape structure on mate location appear to be unimportant to the spread of the gypsy moth, we predict they would have stronger effects on more dispersive species.


Asunto(s)
Distribución Animal , Bosques , Mariposas Nocturnas/fisiología , Reproducción/fisiología , Animales , Masculino , Modelos Biológicos , Factores de Tiempo
14.
J Anim Ecol ; 84(1): 188-98, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25039257

RESUMEN

Reproductive asynchrony, a temporal mismatch in reproductive maturation between an individual and potential mates, may contribute to mate-finding failure and Allee effects that influence the establishment and spread of invasive species. Variation in elevation is likely to promote variability in maturation times for species with temperature-dependent development, but it is not known how strongly this influences reproductive asynchrony or the population growth of invasive species. We examined whether spatial variation in reproductive asynchrony, due to differences in elevation and local heterogeneity in elevation (hilliness), can explain spatial heterogeneity in the population growth rate of the gypsy moth, Lymantria dispar (L.), along its invasion front in Virginia and West Virginia, USA. We used a spatially explicit model of the effects of reproductive asynchrony on mating success to develop predictions of the influences of elevation and elevational heterogeneity on local population growth rates. Population growth rates declined with increased elevation and more modestly with increased elevational heterogeneity. As in earlier work, we found a positive relationship between the population growth rate and the number of introduced egg masses, indicating a demographic Allee effect. At high elevations and high heterogeneity in elevation, the population growth rate was lowest and the density at which the population tended to replace itself (i.e. the Allee threshold) was highest. An analysis of 22 years of field data also showed decreases in population growth rates with elevation and heterogeneity in elevation that were largely consistent with the model predictions. These results highlight how topographic characteristics can affect reproductive asynchrony and influence mate-finding Allee effects in an invading non-native insect population. Given the dependence of developmental rates on temperature in poikilotherms, topographic effects on reproductive success could potentially be important to the population dynamics of many organisms.


Asunto(s)
Especies Introducidas , Mariposas Nocturnas/fisiología , Conducta Sexual Animal , Altitud , Distribución Animal , Animales , Femenino , Geografía , Masculino , Crecimiento Demográfico , Factores de Tiempo , Virginia , West Virginia
15.
Ecology ; : e4442, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350358

RESUMEN

Ecotones are the transition zones between ecosystems and can exhibit steep gradients in ecosystem properties controlling flows of energy and organisms between them. Ecotones are understood to be sensitive to climate and environmental changes, but the potential for spatiotemporal dynamics of ecotones to act as indicators of such changes is limited by methodological and logistical constraints. Here, we use a novel combination of satellite remote sensing and analyses of spatial synchrony to identify the tropical dry forest-rainforest ecotone in Area de Conservación Guanacaste, Costa Rica. We further examine how climate and topography influence the spatiotemporal dynamics of the ecotone, showing that ecotone is most prevalent at mid-elevations where the topography leads to moisture accumulation and that climatic moisture availability influences up and downslope interannual variation in ecotone location. We found some evidence for long-term (22 year) trends toward upslope or downslope ecotone shifts, but stronger evidence that regional climate mediates topographic controls on ecotone properties. Our findings suggest the ecotone boundary on the dry forest side may be less resilient to future precipitation reductions and that if drought frequency increases, ecotone reductions are more likely to occur along the dry forest boundary.

16.
Ecohealth ; 21(1): 46-55, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38704455

RESUMEN

Incidence of Lyme disease, a tick-borne illness prevalent in the US, is increasing in endemic regions and regions with no previous history of the disease, significantly impacting public health. We examined space-time patterns of Lyme disease incidence and the influence of ecological and social factors on spatial synchrony, i.e., correlated incidence fluctuations across US counties. Specifically, we addressed these questions: Does Lyme disease incidence exhibit spatial synchrony? If so, what geographic patterns does Lyme disease synchrony exhibit? Are geographic patterns of disease synchrony related to weather, land cover, access to health care, or tick-borne disease awareness? How do effects of these variables on Lyme disease synchrony differ geographically? We used network analysis and matrix regression to examine geographical patterns of Lyme disease synchrony and their potential mechanisms in 399 counties in the eastern and Midwestern US. We found two distinct regions of synchrony in Northeast and upper Midwest regions exhibiting opposing temporal fluctuations in incidence. Spatial patterns of Lyme disease synchrony were partly explained by land cover, weather, poverty, and awareness of tick-borne illness, with significant predictive variables changing regionally. However, the two regions may have become more synchronous over time, potentially leading to higher-amplitude nation-wide fluctuations in disease incidence.


Asunto(s)
Enfermedad de Lyme , Enfermedad de Lyme/epidemiología , Humanos , Incidencia , Estados Unidos/epidemiología , Tiempo (Meteorología) , Análisis Espacio-Temporal
17.
Ecology ; 105(4): e4270, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38415343

RESUMEN

Spatial synchrony is the tendency for population fluctuations to be correlated among different locations. This phenomenon is a ubiquitous feature of population dynamics and is important for ecosystem stability, but several aspects of synchrony remain unresolved. In particular, the extent to which any particular mechanism, such as dispersal, contributes to observed synchrony in natural populations has been difficult to determine. To address this gap, we leveraged recent methodological improvements to determine how dispersal structures synchrony in giant kelp (Macrocystis pyrifera), a global marine foundation species that has served as a useful system for understanding synchrony. We quantified population synchrony and fecundity with satellite imagery across 11 years and 880 km of coastline in southern California, USA, and estimated propagule dispersal probabilities using a high-resolution ocean circulation model. Using matrix regression models that control for the influence of geographic distance, resources (seawater nitrate), and disturbance (destructive waves), we discovered that dispersal was an important driver of synchrony. Our findings were robust to assumptions about propagule mortality during dispersal and consistent between two metrics of dispersal: (1) the individual probability of dispersal and (2) estimates of demographic connectivity that incorporate fecundity (the number of propagules dispersing). We also found that dispersal and environmental conditions resulted in geographic clusters with distinct patterns of synchrony. This study is among the few to statistically associate synchrony with dispersal in a natural population and the first to do so in a marine organism. The synchronizing effects of dispersal and environmental conditions on foundation species, such as giant kelp, likely have cascading effects on the spatial stability of biodiversity and ecosystem function.


Asunto(s)
Kelp , Macrocystis , Ecosistema , Bosques , Dinámica Poblacional
18.
Insect Sci ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516807

RESUMEN

Under global climate change, high and low temperature extremes can drive shifts in species distributions. Across the range of a species, thermal tolerance is based on acclimatization, plasticity, and may undergo selection, shaping resilience to temperature stress. In this study, we measured variation in cold temperature tolerance of early instar larvae of an invasive forest insect, Lymantria dispar dispar L. (Lepidoptera: Erebidae), using populations sourced from a range of climates within the current introduced range in the Eastern United States. We tested for population differences in chill coma recovery (CCR) by measuring recovery time following a period of exposure to a nonlethal cold temperature in 2 cold exposure experiments. A 3rd experiment quantified growth responses after CCR to evaluate sublethal effects. Our results indicate that cold tolerance is linked to regional climate, with individuals from populations sourced from colder climates recovering faster from chill coma. While this geographic gradient is seen in many species, detecting this pattern is notable for an introduced species founded from a single point-source introduction. We demonstrate that the cold temperatures used in our experiments occur in nature during cold spells after spring egg hatch, but impacts to growth and survival appear low. We expect that population differences in cold temperature performance manifest more from differences in temperature-dependent growth than acute exposure. Evaluating intraspecific variation in cold tolerance increases our understanding of the role of climatic gradients on the physiology of an invasive species, and contributes to tools for predicting further expansion.

19.
Harmful Algae ; 137: 102679, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39003024

RESUMEN

Algal blooms can threaten human health if cyanotoxins such as microcystin are produced by cyanobacteria. Regularly monitoring microcystin concentrations in recreational waters to inform management action is a tool for protecting public health; however, monitoring cyanotoxins is resource- and time-intensive. Statistical models that identify waterbodies likely to produce microcystin can help guide monitoring efforts, but variability in bloom severity and cyanotoxin production among lakes and years makes prediction challenging. We evaluated the skill of a statistical classification model developed from water quality surveys in one season with low temporal replication but broad spatial coverage to predict if microcystin is likely to be detected in a lake in subsequent years. We used summertime monitoring data from 128 lakes in Iowa (USA) sampled between 2017 and 2021 to build and evaluate a predictive model of microcystin detection as a function of lake physical and chemical attributes, watershed characteristics, zooplankton abundance, and weather. The model built from 2017 data identified pH, total nutrient concentrations, and ecogeographic variables as the best predictors of microcystin detection in this population of lakes. We then applied the 2017 classification model to data collected in subsequent years and found that model skill declined but remained effective at predicting microcystin detection (area under the curve, AUC ≥ 0.7). We assessed if classification skill could be improved by assimilating the previous years' monitoring data into the model, but model skill was only minimally enhanced. Overall, the classification model remained reliable under varying climatic conditions. Finally, we tested if early season observations could be combined with a trained model to provide early warning for late summer microcystin detection, but model skill was low in all years and below the AUC threshold for two years. The results of these modeling exercises support the application of correlative analyses built on single-season sampling data to monitoring decision-making, but similar investigations are needed in other regions to build further evidence for this approach in management application.


Asunto(s)
Monitoreo del Ambiente , Lagos , Microcistinas , Modelos Estadísticos , Microcistinas/análisis , Lagos/química , Monitoreo del Ambiente/métodos , Iowa , Cianobacterias , Clima , Estaciones del Año , Floraciones de Algas Nocivas , Calidad del Agua
20.
Curr Opin Insect Sci ; 53: 100959, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35934275

RESUMEN

The causes of spatial synchrony in population dynamics are often elusive. We review how recent advances have enhanced understanding of the causes of the spatial synchrony of insect populations and revealed previously underappreciated complexities in patterns of synchrony. We highlight how regional-scale studies of population genetic structure have helped elucidate the role of dispersal in population synchronization and how novel data-analytic approaches have revealed variation in spatial synchrony across timescales and geographies and the underlying drivers. We also stress the limited current understanding of the impacts of climate change on the spatial synchrony of insect populations and the potential ramifications of these effects for pest management as well as species conservation.


Asunto(s)
Cambio Climático , Animales , Geografía , Dinámica Poblacional
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda