Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Sci Technol ; 58(2): 1177-1186, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38170897

RESUMEN

Ammonia (NH3) volatilization from agricultural lands is a main source of atmospheric reduced nitrogen species (NHx). Accurately quantifying its contribution to regional atmospheric NHx deposition is critical for controlling regional air nitrogen pollution. The stable nitrogen isotope composition (expressed by δ15N) is a promising indicator to trace atmospheric NHx sources, presupposing a reliable nitrogen isotopic signature of NH3 emission sources. To obtain more specific seasonal δ15N values of soil NH3 volatilization for reliable regional seasonal NH3 source partitioning, we utilized an active dynamic sampling technique to measure the δ15N-NH3 values volatilized from maize cropping land in northeast China. These values varied from -38.0 to -0.2‰, with a significantly lower rate-weighted value observed in the early period (May-June, -30.5 ± 6.7‰) as compared with the late period (July-October, -8.5 ± 4.3‰). Seasonal δ15N-NH3 variations were related to the main NH3 production pathway, degree of soil ammonium consumption, and soil environment. Bayesian isotope mixing model analysis revealed that without considering the seasonal δ15N variation in soil-volatilized NH3 could result in an overestimate by up to absolute 38% for agricultural volatile NH3 to regional atmospheric bulk ammonium deposition during July-October, further demonstrating that it is essential to distinguish seasonal δ15N profile of agricultural volatile NH3 in regional source apportionment.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Amoníaco/análisis , Isótopos de Nitrógeno/análisis , Estaciones del Año , Ecosistema , Teorema de Bayes , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Compuestos de Amonio/análisis , Nitrógeno/análisis , China , Suelo , Productos Agrícolas
2.
Anal Chem ; 95(6): 3371-3378, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36719775

RESUMEN

The family of atmospheric oxides of nitrogen, NOy (e.g., nitrogen oxides (NOx) + nitric acid (HNO3) + nitrous acid (HONO) + peroxyacetyl nitrate (PAN) + particulate nitrate (pNO3-) + other), have an influential role in atmospheric chemistry, climate, and the environment. The nitrogen (δ15N) and oxygen (δ18O and Δ17O) stable isotopes of NOy are novel tools for potentially tracking emission sources and quantifying oxidation chemistry. However, there is a lack of well-established methods, particularly for speciated gas-phase components of NOy, to accurately quantify δ15N, δ18O, and Δ17O. This work presents controlled laboratory experiments and complex chamber α-pinene/NOx oxidation experiments of a sampling apparatus constructed for the simultaneous capture of multiple NOy species for isotope analysis using a series of coated denuders, with a focus on nitrogen dioxide (NO2•). The laboratory tests indicate complete NO2• capture for the targeted concentration of 15 ppbv for at least 24 h collections at 10 liters per minute, with δ15N and δ18O precisions of ±1.3‰ and 1.0‰, respectively, and minimal (2.2% ± 0.1%) NO2• collection on upstream denuders utilized for the capture of HNO3 and other acidic gases. The multispecies NOy collection system showed excellent concentration correlations with online instrumentation for both HNO3 and NO2• and isotope reproducibility of ±1.7‰, ±1.8‰, and ±0.7‰ for δ15N, δ18O, and Δ17O, respectively, for replicate experiments and highly time-resolved collections. This work demonstrates a new method that can enable the simultaneous collection of HNO3 and NO2• for accurate quantification of concentration and isotopic composition.

3.
Environ Sci Technol ; 56(3): 1578-1585, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050606

RESUMEN

A general feature in the diurnal cycle of atmospheric ammonia (NH3) concentrations is a morning spike that typically occurs around 07:00 to 10:00 (LST). Current hypotheses to explain this morning's NH3 increase remain elusive, and there is still no consensus whether traffic emissions are among the major sources of urban NH3. Here, we confirmed that the NH3 morning pulse in urban Beijing is a universal feature, with an annual occurrence frequency of 73.0% and a rapid growth rate (>20%) in winter. The stable nitrogen isotopic composition of NH3 (δ15N-NH3) in winter also exhibited a significant diurnal variation with an obvious morning peak at 07:00 to 10:00 (-18.6‰, mass-weighted mean), higher than other times of the day (-26.3‰). This diurnal pattern suggests that a large fraction of NH3 in the morning originated from nonagricultural sources, for example, power plants, vehicles, and coal combustion that tend to have higher δ15N-NH3 emission signatures relative to agricultural emissions. In particular, the contribution from vehicular emissions increased from 18% (00:00 to 07:00) to 40% (07:00 to 10:00), while the contribution of fertilizer sources to NH3 was reduced from 15.8% at 00:00 to 07:00 to 5.2% at 07:00 to 10:00. We concluded that NH3 concentrations in winter mornings in urban Beijing were indeed enhanced by vehicle emissions, which should be considered in air pollution regulations.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Amoníaco , China , Monitoreo del Ambiente , Nitrógeno , Isótopos de Nitrógeno , Estaciones del Año
4.
Anal Chem ; 92(24): 16079-16088, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33263979

RESUMEN

Stable isotopic composition of atmospheric nitrate (nitric acid (HNO3) + particulate nitrate (pNO3-)) provides a higher-order dimensional analysis of critical atmospheric components, enabling a process-level understanding of precursor emissions, oxidation chemistry, aerosol acidity, and depositional patterns. Current methods have not been evaluated for their ability to accurately speciate and determine nitrogen (δ15N) and oxygen (δ18O and Δ17O) isotope compositions for gaseous and particle phases. Suitability of a denuder-filter sampling system for the collection of speciated HNO3(g) and pNO3- for off-line concentration and isotopic determination was tested using both laboratory and field collections. Honeycomb denuders coated with either NaCl or Na2CO3 solutions were used to collect HNO3(g). Laboratory experiments found that both coating solutions quantitatively collected HNO3(g), with the Na2CO3 solution demonstrating a higher operative capacity (>1470 µg of HNO3; n = 25) compared to the NaCl solution (∼750 µg of HNO3; n = 25). The precision values for laboratory-tested HNO3(g) collections are ±0.6‰ and ±1.2‰ for δ15N and δ18O for the NaCl solution and ± 0.8‰ and ±1.2‰ for the Na2CO3 solution. Replicate (urban) samples indicate that the Na2CO3 solution is significantly less selective for HNO3(g) collection than the NaCl solution. Nylon filters were found to collect efficiently and retain laboratory-generated NaNO3 and NH4NO3 particles, with maximum standard deviations for δ15N and δ18O of ±0.3‰ and ±0.3‰, respectively. Field replicates, while predictably more variable, also show consistency for δ15N and δ18O of ±0.6‰ and ±1.3‰ for particulate species, respectively. Recommended methods for field collections of speciated HNO3(g) and pNO3- for isotopic measurements would best utilize the NaCl solution and Nylon filters.

5.
Anal Chem ; 91(12): 7586-7594, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117401

RESUMEN

Nitrogen stable isotope analysis (δ15N) of particulate ammonium (NH4+) may provide additional constraints on this critical component of fine particulate matter; however, no previous collection method has been verified for its ability to accurately and precisely characterize δ15N(NH4+). This is a critical point due to the difficulty of quantitative NH4+ collection and possible sampling artifacts. Here, we report on δ15N(NH4+) precision using an established denuder-filter pack combination with two filter configurations including (1) a nylon filter plus an acid-impregnated cellulose filter and (2) an acid-impregnated glass fiber filter for NH4+ collection in both laboratory-controlled environments and ambient air samples. Laboratory NH4+ were generated from the nebulization of ammonium salt solutions and collected using a filter pack sampling train for off-line concentration and isotopic measurement. Quantitative collection of NH4+ was achieved using both filter configurations in both laboratory and field collections. Laboratory experiments indicate a δ15N(NH4+) precision of ±0.9‰ (1σ; n = 24) and ±0.6‰ ( n = 9) for the nylon plus citric acid impregnated cellulose filter and for the citric acid impregnated glass fiber filter, respectively. Field sample reproducibility was assessed from 24 h collected side-by-side samples and indicated δ15N(NH4+) to be reproducible within 1.1‰, consistent with the laboratory findings. This work represents the first established method for speciated NH4+ collection for isotopic analysis with important implications for furthering our understanding of its atmospheric dynamics.

6.
Anal Chem ; 90(13): 8051-8057, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29894634

RESUMEN

Nitrogen stable isotope analysis (δ15N) of ammonia (NH3) has shown potential to be a useful tool for characterizing emission sources and sink processes. However, to properly evaluate NH3 emission sources and sink processes under ambient conditions, it is necessary to collect and characterize the chemical speciation between NH3 and particulate ammonium (p-NH4+), together referred to as NH x. Current NH3 collection methods have not been verified for their ability to accurately characterize δ15N-NH3 and/or provide necessary chemical speciation (i.e., δ15N-NH3 and δ15N-NH4+). Here, we report on the suitability of an established collection device that can provide NH x speciation, an acid-coated (2% citric acid (w/v) + 1% glycerol (w/v) in 80:20 methanol to water solution) honeycomb denuder (HCD) with a downstream filter pack housed in the ChemComb Speciation Cartridge (CCSC), for characterizing δ15N-NH3 under a variety of laboratory-controlled conditions and field collections. The collection method was tested under varying NH3 concentration, relative humidity, temperature, and collection time at a flow rate of 10 L per minute (LPM). The acid-coated HCD collection device and subsequent chemical processing for δ15N-NH3 analysis is found to have excellent accuracy and precision of ±1.6‰ (2σ), with an operative capacity of ∼400 µg of collected NH3 for concentrations ≤207 ppbv. This work presents the first laboratory verified method for δ15N-NH3 analysis and will be useful in future air quality studies.

7.
J Chem Phys ; 145(22): 224311, 2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27984902

RESUMEN

Ab initio calculations have been carried out to investigate nitrogen (k15/k14) and position-specific oxygen (k17/k16O & k18/k16) kinetic isotope effects (KIEs) for the reaction between NO and O3 using CCSD(T)/6-31G(d) and CCSD(T)/6-311G(d) derived frequencies in the complete Bigeleisen equations. Isotopic enrichment factors are calculated to be -6.7‰, -1.3‰, -44.7‰, -14.1‰, and -0.3‰ at 298 K for the reactions involving the 15N16O, 14N18O, 18O16O16O, 16O18O16O, and 16O16O18O isotopologues relative to the 14N16O and 16O3 isotopologues, respectively (CCSD(T)/6-311G(d)). Using our oxygen position-specific KIEs, a kinetic model was constructed using Kintecus, which estimates the overall isotopic enrichment factors associated with unreacted O3 and the oxygen transferred to NO2 to be -19.6‰ and -22.8‰, respectively, (CCSD(T)/6-311G(d)) which tends to be in agreement with previously reported experimental data. While this result may be fortuitous, this agreement suggests that our model is capturing the most important features of the underlying physics of the KIE associated with this reaction (i.e., shifts in zero-point energies). The calculated KIEs will useful in future NOx isotopic modeling studies aimed at understanding the processes responsible for the observed tropospheric isotopic variations of NOx as well as for tropospheric nitrate.

8.
Environ Sci Technol ; 49(4): 2278-85, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25621737

RESUMEN

The nitrogen stable isotope ratio of NOx (δ(15)N-NOx) has been proposed as a regional indicator for NOx source partitioning; however, knowledge of δ(15)N values from various NOx emission sources is limited. This study presents a detailed analysis of δ(15)N-NOx emitted from vehicle exhaust, the largest source of anthropogenic NOx. To accomplish this, NOx was collected from 26 different vehicles, including gasoline and diesel-powered engines, using a modification of a NOx collection method used by the United States Environmental Protection Agency, and δ(15)N-NOx was analyzed. The vehicles sampled in this study emitted δ(15)N-NOx values ranging from -19.1 to 9.8‰ that negatively correlated with the emitted NOx concentrations (8.5 to 286 ppm) and vehicle run time because of kinetic isotope fractionation effects associated with the catalytic reduction of NOx. A model for determining the mass-weighted δ(15)N-NOx from vehicle exhaust was constructed on the basis of average commute times, and the model estimates an average value of -2.5 ± 1.5‰, with slight regional variations. As technology improvements in catalytic converters reduce cold-start emissions in the future, it is likely to increase current δ(15)N-NOx values emitted from vehicles.


Asunto(s)
Contaminantes Atmosféricos/análisis , Isótopos de Nitrógeno/análisis , Óxidos de Nitrógeno/análisis , Emisiones de Vehículos/análisis , Automóviles , Monitoreo del Ambiente , Gasolina
9.
Environ Sci Technol ; 49(19): 11363-71, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26332865

RESUMEN

The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.


Asunto(s)
Combustibles Fósiles/análisis , Isótopos de Nitrógeno/análisis , Óxidos de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Monitoreo del Ambiente/métodos , Gasolina , Óxidos de Nitrógeno/química , Centrales Eléctricas , Estaciones del Año , Estados Unidos , Emisiones de Vehículos/análisis
10.
Opt Express ; 22(12): 14885-95, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24977583

RESUMEN

We report on a mid-IR optical parametric oscillator (OPO)-based high resolution transient absorption spectrometer for state-resolved collisional energy transfer. Transient Doppler-broadened line profiles at λ = 3.3 µm are reported for HCl R7 transitions following gas-phase collisions with vibrationally excited pyrazine. The instrument noise, analyzed as a function of IR wavelength across the absorption line, is as much as 10 times smaller than in diode laser-based measurements. The reduced noise is attributed to larger intensity IR light that has greater intensity stability, which in turn leads to reduced detector noise and better frequency locking for the OPO.

11.
ACS Earth Space Chem ; 8(5): 1039-1047, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38774357

RESUMEN

The stable nitrogen isotope composition (δ15N) of atmospheric ammonia (NH3) and ammonium (NH4+) has emerged as a potent tool for improving our understanding of the atmospheric burden of reduced nitrogen. However, current chemical oxidation methodologies commonly utilized for characterizing δ15N values of NH4+ samples have been found to lead to low precision for low concentration (i.e., < 5 µmol L-1) samples and often suffer from matrix interferences. Here, we present an analytical methodology to extract and concentrate NH4+ from samples through use of a sample pretreatment step using a solid phase extraction technique involving cation exchange resins. Laboratory control tests indicated that 0.4 g of cation exchange resin (Biorad AG-50W) and 10 mL of 4 M sodium chloride extraction solution enabled the complete capture and removal of NH4+. Using this sample pretreatment methodology, we obtained accurate and precise δ15N values for NH4+ reference materials and an in-house quality control sample at concentrations as low as 1.0 µM. Additionally, the sample pretreatment methodology was evaluated using atmospheric aerosol samples previously measured for δ15N-NH4+ (from Changdao Island, China), which indicated an excellent δ15N-NH4+ match between sample pretreatment and no treatment (y = (0.98 ± 0.05)x + (0.11 ± 0.6), R2 = 0.99). Further, this methodology successfully extracted NH4+ from aerosol samples and separated it from present matrix effects (samples collected from Oahu, Hawaii; pooled standard deviation δ15N-NH4+ = ± 0.5‰,n = 16 paired samples) that without pretreatment originally failed to quantitatively oxidize to nitrite for subsequent δ15N isotope analysis. Thus, we recommend applying this sample pretreatment step for all environmental NH4+ samples to ensure accurate and precise δ15N measurement.

12.
ACS EST Air ; 1(6): 451-463, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38884197

RESUMEN

Atmospheric nitrate, including nitric acid (HNO3), particulate nitrate (pNO3), and organic nitrate (RONO2), is a key atmosphere component with implications for air quality, nutrient deposition, and climate. However, accurately representing atmospheric nitrate concentrations within atmospheric chemistry models is a persistent challenge. A contributing factor to this challenge is the intricate chemical transformations involving HNO3 formation, which can be difficult for models to replicate. Here, we present a novel model framework that utilizes the oxygen stable isotope anomaly (Δ17O) to quantitatively depict ozone (O3) involvement in precursor nitrogen oxides N O x = N O + N O 2 photochemical cycling and HNO3 formation. This framework has been integrated into the US EPA Community Multiscale Air Quality (CMAQ) modeling system to facilitate a comprehensive assessment of NO x oxidation and HNO3 formation. In application across the northeastern US, the model Δ17O compares well with recently conducted diurnal Δ17O(NO2) and spatiotemporal Δ17O(HNO3) observations, with a root mean square error between model and observations of 2.6 ‰ for Δ17O(HNO3). The model indicates the major formation pathways of annual HNO3 production within the northeastern US are NO+OH (46 %), N2O5 hydrolysis (34 %), and organic nitrate hydrolysis (12 %). This model can evaluate NO x chemistry in CMAQ in future air quality and deposition studies involving reactive nitrogen.

13.
Res Sq ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38699374

RESUMEN

Air quality management commonly aims to mitigate emissions of oxides of nitrogen (NOx) from combustion, reducing ozone and particulate matter pollution. Despite such efforts, regulations have recently proven ineffective in rural areas like the Salton Sea Air Basin of Southern California, which routinely violates air quality standards. With $2 billion in annual agricultural sales and low population density, air quality in the region is likely influenced by year-round farming. We conducted NOx source apportionment using nitrogen stable isotopes of ambient NO2, which indicate a substantial contribution of soil-emitted NOx. The soil source strength was estimated based on the mean δ15N-NOx from each emission category in the California Air Resources Board's NOx inventory. Our annual average soil emission estimate for the air basin was 11.4 ± 4 tons/d, representing ~30% of the extant NOx inventory, 10× larger than the state's inventory. Therefore, the impact of soil NOx in agricultural regions must be re-evaluated.

14.
Sci Total Environ ; 922: 171265, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38417516

RESUMEN

The role of agricultural versus vehicle emissions in urban atmospheric ammonia (NH3) remains unclear. The lockdown due to the outbreak of COVID-19 provided an opportunity to assess the role of source emissions on urban NH3. Concentrations and δ15N of aerosol ammonium (NH4+) were measured before (autumn in 2017) and during the lockdown (summer, autumn, and winter in 2020), and source contributions were quantified using SIAR. Despite the insignificant decrease in NH4+ concentrations, significantly lower δ15N-NH4+ was found in 2020 (0.6 ± 1.0‰ in PM2.5 and 1.4 ± 2.1‰ in PM10) than in 2017 (15.2 ± 6.7‰ in PM2.5), which indicates the NH3 from vehicle emissions has decreased by∼50% during the lockdown while other source emissions are less affected. Moreover, a reversed seasonal pattern of δ15N-NH4+ during the lockdown in Changsha has been revealed compared to previous urban studies, which can be explained by the dominant effect of non-fossil fuel emissions due to the reductions of vehicle emissions during the lockdown period. Our results highlight the effects of lockdown on aerosol δ15N-NH4+ and the importance of vehicle emissions to urban atmospheric NH3, providing conclusive evidence that reducing vehicle NH3 emissions could be an effective strategy to reduce PM2.5 in Chinese megacities.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Compuestos de Amonio/análisis , Isótopos de Nitrógeno/análisis , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Aerosoles y Gotitas Respiratorias , Amoníaco/análisis , Material Particulado/análisis , China
15.
MethodsX ; 11: 102413, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37860045

RESUMEN

Oxygen stable isotopes (i.e., 16O, 17O, 18O) of nitrite (NO2-) are useful for investigating chemical processes and sources contributing to this important environmental contaminant and nutrient. However, it remains difficult to quantify the oxygen isotope compositions of NO2- due to the lack of internationally recognized NO2- reference materials with a well-known Δ(17O) value. Here we have adopted a combination of methodologies to develop a technique for measuring Δ(17O) of NO2- by reducing nitrate (NO3-) materials with internationally recognized Δ(17O) values to NO2- using activated cadmium catalyzed by chloride in a basic solution while conserving Δ(17O). The NO3- reference materials reduced to NO2- and sample NO2- unknowns are converted to N2O using sodium azide/acetic acid reagent and decomposed to O2 by passing through a heated gold tube and introduced into a continuous flow isotope ratio mass spectrometer for analysis at m/z 32, 33, and 34 for Δ(17O) quantification. The adapted method involves the following main points:•NO3- reference materials with internationally recognized oxygen isotope composition are reduced to NO2- under high pH conditions that conserve Δ(17O) values.•The NO3- reference materials reduced to NO2- and sample NO2- with unknown Δ(17O) values are reduced to N2O using chemical methods involving sodium azide/acetic acid.•The product N2O is extracted, purified, decomposed to O2, and analyzed for its isotope composition using a continuous flow isotope ratio mass spectrometer for Δ(17O) quantification. The Δ(17O) of NO2- samples are calibrated with respect to the NO3- reference materials with known Δ(17O) values.

16.
Sci Total Environ ; 904: 166848, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678538

RESUMEN

Atmospheric nitrate and sulfate are major inorganic particulate matter components that impact human and ecosystem health and air quality. Over the last several decades, emissions of the precursor gases, nitrogen oxides (NOx = NO + NO2) and sulfur dioxide (SO2), have dramatically decreased in the US in response to federal regulations. However, the response in concentrations of particulate nitrate (pNO3) and sulfate (pSO4) have not followed predictions due to complex non-linear chemistry feedbacks that may differ amongst environments (i.e., urban vs. rural). In this study, we explored the long-term response of particle chemistry for urban and rural environments in southern New England, a region historically impacted by NOx and SO2 emissions. Particulate matter (PM10) samples collected via the same method from 2005 to 2015 at urban and rural locations in Rhode Island were analyzed for their major inorganic components, and air mass trajectories and statistical analysis were used to identify source regions over time. Our results indicated a significant urban-rural aerosol chemical composition gradient for sampling locations within 40 km. Over time, as anthropogenic influences have decreased, the relative contribution of marine and crustal sources has increased greatly, impacting fine and coarse particle chemistry in recent years. Total mass concentrations of chemical species, particularly anthropogenic pSO4 and particulate ammonium (pNH4), have shown dramatic decreases over the ten years at both the urban and rural sites; however, pNO3 concentration increased by 95 % and 57 % in the urban and rural sites, respectively, despite significant NOx emission reductions. Our results demonstrate that changes in chemical mechanisms due to the decrease in SO2 emissions contributed to decreases in pNH4, along with enhanced pNO3 concentration. Furthermore, the change in SO2 emissions has significantly impacted the atmospheric lifetime and transport distance of pNH4, favoring more localized contributions in recent years.

17.
Sci Total Environ ; 905: 166946, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37696398

RESUMEN

The concentration of atmospheric ammonia (NH3) in urban Beijing substantially decreased during the COVID-19 lockdown (24 January to 3 March 2020), likely due to the reduced human activities. However, quantifying the impact of anthropogenic interventions on NH3 dynamics is challenging, as both meteorology and chemistry mask the real changes in observed NH3 concentrations. Here, we applied machine learning techniques based on random forest models to decouple the impacts of meteorology and emission changes on the gaseous NH3 and ammonium aerosol (NH4+) concentrations in Beijing during the lockdown. Our results showed that the meteorological conditions were unfavorable during the lockdown and tended to cause an increase of 8.4 % in the NH3 concentration. In addition, significant reductions in NOx and SO2 emissions could also elevate NH3 concentrations by favoring NH3 gas-phase partitioning. However, the observed NH3 concentration significantly decreased by 35.9 % during the lockdown, indicating a significant reduction in emissions or enhanced chemical sinks. Rapid gas-to-particle conversion was indeed found during the lockdown. Thus, the observed reduced NH3 concentrations could be partially explained by the enhanced transformation into NH4+. Therefore, the sum of NH3 and NH4+ (collectively, NHx) is a more reliable tracer than NH3 or NH4+ alone to estimate the changes in NH3 emissions. Compared to that under the scenario without lockdowns, the NHx concentration decreased by 26.4 %. We considered that this decrease represents the real decrease in NH3 emissions in Beijing due to the lockdown measures, which was less of a decrease than that based on NH3 only (35.9 %). This study highlights the importance of considering chemical sinks in the atmosphere when applying machine learning techniques to link the concentrations of reactive species with their emissions.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , COVID-19 , Humanos , Amoníaco/análisis , Compuestos de Amonio/análisis , Gases , Beijing , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , China , Material Particulado/análisis
18.
Sci Total Environ ; 838(Pt 1): 155890, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35568164

RESUMEN

It was previously believed that ammonia (NH3) has a short residence time in the atmosphere and cannot be transported far from its sources. In late March, however, this study observed a severe NH3 episode in urban Beijing when fertilizer was intensively applied on the North China Plain, with the highest hourly concentrations of 66.9 µg m-3 throughout the year. The stable nitrogen isotopic composition of NH3 (δ15N-NH3) during this episode (-37.0 to -20.0‰) fell in the range of endmembers of fertilizer and livestock, suggesting the long-range transport of NH3 from agricultural to urban regions. Based on a Bayesian isotope mixing model, the contribution of agriculture (fertilization) to urban NH3 concentrations was apportioned as 43.5% (26.0%) on polluted days. However, these contributions were reduced to 29.1% (12.8%) when nitrogen isotope fractionation between NH3 and ammonium was considered. In contrast to the limited contribution of agricultural sources, we found that nonagricultural emissions, particularly vehicles, dominate the source of NH3 in urban Beijing, even during the fertilization period. This finding indicated that nonagricultural sources should be considered when designing a control strategy for NH3 to reduce haze pollution in the urban atmosphere.


Asunto(s)
Contaminantes Atmosféricos , Amoníaco , Contaminantes Atmosféricos/análisis , Amoníaco/análisis , Atmósfera , Teorema de Bayes , China , Monitoreo del Ambiente , Fertilización , Fertilizantes , Nitrógeno , Isótopos de Nitrógeno/análisis
19.
Environ Pollut ; 296: 118752, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34968617

RESUMEN

Effects of human activities on atmospheric nitrate (NO3-) formation remain unclear, though the knowledge is critical for improving atmospheric chemistry models and nitrogen deposition reduction strategies. A potentially useful way to explore this is to compare NO3- oxidation processes in urban and rural atmospheres based upon the oxygen stable isotope composition of NO3- (Δ17O-NO3-). Here we compared the Δ17O-NO3- from three-years of daily-based bulk deposition in urban (Shenyang) and forested rural sites (Qingyuan) in northeast China and quantified the relative contributions of different formation pathways based on the SIAR model. Our results showed that the Δ17O in Qiangyuan (26.2 ± 3.3‰) is significantly higher (p < 0.001) than in Shenyang (24.0 ± 4.0‰), and significantly higher in winter (Shenyang: 26.1 ± 6.7‰, Qingyuan: 29.6 ± 2.5‰) than in summer (Shenyang: 22.7 ± 2.9‰, Qingyuan: 23.8 ± 2.4‰) in both sites. The lower values in the urban site are linked with conditions that favored a higher relative contribution of nitrogen dioxide reaction with OH pathway (0.76-0.91) than in rural site (0.47-0.62), which should be induced by different levels of human activities in the two sites. The seasonal variations of Δ17O-NO3- in both sites are explained by a higher relative contribution of ozone-mediated oxidation chemistry and unfavorable conditions for the OH pathway during winter relative to summer, which is affected by human activities and seasonal meteorological condition change. Based on Δ17O, wintertime conditions led to a contribution of O3 related pathways (NO3 + DMS/HC and N2O5 hydrolysis) of 0.63 in Qingyuan and 0.42 in Shenyang, while summertime conditions led to 0.15 in Qingyuan and 0.05 in Shenyang. Our comparative study on Δ17O-NO3- between urban and rural sites reveals different anthropogenic effects on nitrate formation processes on spatial and temporal scales, illustrating different responses of reactive nitrogen chemistry to changes in human activities.


Asunto(s)
Efectos Antropogénicos , Nitratos , China , Monitoreo del Ambiente , Humanos , Nitratos/análisis , Isótopos de Nitrógeno/análisis , Estaciones del Año
20.
Nat Commun ; 13(1): 7710, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36513669

RESUMEN

Atmospheric ammonia (NH3) and ammonium (NH4+) can substantially influence air quality, ecosystems, and climate. NH3 volatilization from fertilizers and wastes (v-NH3) has long been assumed to be the primary NH3 source, but the contribution of combustion-related NH3 (c-NH3, mainly fossil fuels and biomass burning) remains unconstrained. Here, we collated nitrogen isotopes of atmospheric NH3 and NH4+ and established a robust method to differentiate v-NH3 and c-NH3. We found that the relative contribution of the c-NH3 in the total NH3 emissions reached up to 40 ± 21% (6.6 ± 3.4 Tg N yr-1), 49 ± 16% (2.8 ± 0.9 Tg N yr-1), and 44 ± 19% (2.8 ± 1.3 Tg N yr-1) in East Asia, North America, and Europe, respectively, though its fractions and amounts in these regions generally decreased over the past decades. Given its importance, c-NH3 emission should be considered in making emission inventories, dispersion modeling, mitigation strategies, budgeting deposition fluxes, and evaluating the ecological effects of atmospheric NH3 loading.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Amoníaco/análisis , Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , Nitrógeno/análisis , China
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda