Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Bioresour Technol ; 267: 416-425, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30032055

RESUMEN

Biodenitrification using solid carbon sources is a cost-effective way for nitrate removal. In the study, wheat straw, cotton, poly(butylene succinate), and newspaper was chosen as the carbon source to compare the denitrification efficiency and bacterial communities in constructed wetlands. Parameters including COD, NO3--N, NO2--N and total nitrogen (TN) were analyzed. Results indicated that newspaper provided significantly higher NO3--N and TN removal efficiency than the other three solid carbon sources in low-temperature condition. Moreover, both newspaper and wheat straw allowed high NO3--N and TN removal efficiency in high-temperature condition. According to pyrosequencing analysis, denitrifying bacteria Dechloromonas and Thauera were the predominant genus in the anaerobic zone of CO- (3.92 and 2.35%, respectively), WS- (1.97 and 1.02%, respectively) and NP-CWs (1.71 and 1.31%, respectively). Genus of Levilinea was enriched in NP- (1.02%) and WS-CWs (0.91%). Furthermore, genus Paludibacter (2.69%) and Saccharofermentans (3.14%) showed high relative abundance in WS-CWs.


Asunto(s)
Desnitrificación , Humedales , Bacterias , Carbono , Procesos Heterotróficos , Nitrógeno
2.
Chemosphere ; 189: 10-20, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28922630

RESUMEN

In the paper, we explored the influences of different dosages of iron and calcium carbonate on contaminant removal efficiencies and microbial communities in algal ponds combined with constructed wetlands. After 1-year operation of treatment systems, based on the high-throughput pyrosequencing analysis of microbial communities, the optimal operating conditions were obtained as follows: the ACW10 system with Fe3+ (5.6 mg L-1), iron powder (2.8 mg L-1), and CaCO3 powder (0.2 mg L-1) in influent as the adjusting agents, initial phosphorus source (PO43-) in influent, the ratio of nitrogen to phosphorus (N/P) of 30 in influent, and hydraulic retention time (HRT) of 1 day. Total nitrogen (TN) removal efficiency and total phosphorus (TP) removal efficiency were improved significantly. The hydrolysis of CaCO3 promoted the physicochemical precipitation in contaminant removal. Meanwhile, Fe3+ and iron powder produced Fe2+, which improved contaminant removal. Iron ion improved the diversity, distribution, and metabolic functions of microbial communities in integrated treatment systems. In the treatment ACW10, the dominant phylum in the microbial community was PLANCTOMYCETES, which positively promoted nitrogen removal. After 5 consecutive treatments in ACW10, contaminant removal efficiencies for TN and TP respectively reached 80.6% and 57.3% and total iron concentration in effluent was 0.042 mg L-1.


Asunto(s)
Biota/efectos de los fármacos , Carbonato de Calcio/farmacología , Hierro/farmacología , Aguas Residuales/análisis , Purificación del Agua/métodos , Bacterias/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Estanques/análisis , Estanques/microbiología , Humedales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda