Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-38700973

RESUMEN

Prostate cancer screening often relies on cost-intensive MRIs and invasive needle biopsies. Transrectal ultrasound imaging, as a more affordable and non-invasive alternative, faces the challenge of high inter-class similarity and intra-class variability between benign and malignant prostate cancers. This complexity requires more stringent differentiation of subtle features for accurate auxiliary diagnosis. In response, we introduce the novel Deep Augmented Metric Learning (DAML) network, specifically tailored for ultrasound-based prostate cancer classification. The DAML network represents a significant innovation in the metric learning space, introducing the Semantic Differences Mining Strategy (SDMS) to effectively discern and represent subtle differences in prostate ultrasound images, thereby enhancing tumor classification accuracy. Additionally, the DAML network strategically addresses class variability and limited sample sizes by combining the Linear Interpolation Augmentation Strategy (LIAS) and Permutation-Aided Reconstruction Loss (PARL). This approach enriches feature representation and introduces variability with straightforward structures, mirroring the efficacy of advanced sample generation techniques. We carried out comprehensive empirical assessments of the DAML model by testing its key components against a range of models, ensuring its effectiveness. Our results demonstrate the enhanced performance of the DAML model, achieving classification accuracies of 0.857 and 0.888 for benign and malignant cancers, respectively, underscoring its effectiveness in prostate cancer classification via medical imaging.

2.
Comput Biol Med ; 171: 108177, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422957

RESUMEN

With the increasing number of microRNAs (miRNAs), identifying essential miRNAs has become an important task that needs to be solved urgently. However, there are few computational methods for essential miRNA identification. Here, we proposed a novel framework called Rotation Forest for Essential MicroRNA identification (RFEM) to predict the essentiality of miRNAs in mice. We first constructed 1,264 miRNA features of all miRNA samples by fusing 38 miRNA features obtained from the PESM paper and 1,226 miRNA functional features calculated based on miRNA-target gene interactions. Then, we employed 182 training samples with 1,264 features to train the rotation forest model, which was applied to compute the essentiality scores of the candidate samples. The main innovations of RFEM were as follows: 1) miRNA functional features were introduced to enrich the diversity of miRNA features; 2) the rotation forest model used decision tree as the base classifier and could increase the difference among base classifiers through feature transformation to achieve better ensemble results. Experimental results show that RFEM significantly outperformed two previous models with the AUC (AUPR) of 0.942 (0.944) in three comparison experiments under 5-fold cross validation, which proved the model's reliable performance. Moreover, ablation study was further conducted to demonstrate the effectiveness of the novel miRNA functional features. Additionally, in the case studies of assessing the essentiality of unlabeled miRNAs, experimental literature confirmed that 7 of the top 10 predicted miRNAs have crucial biological functions in mice. Therefore, RFEM would be a reliable tool for identifying essential miRNAs.


Asunto(s)
MicroARNs , Ratones , Animales , MicroARNs/genética , Rotación , Biología Computacional/métodos , Algoritmos , Predisposición Genética a la Enfermedad
3.
World J Oncol ; 15(4): 550-561, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38993243

RESUMEN

Background: Domestic and foreign studies on lung cancer have been oriented to the medical efficacy of low-dose computed tomography (LDCT), but there is a lack of studies on the costs, value and cost-effectiveness of the treatment. There is a scarcity of conclusive evidence regarding the cost-effectiveness of LDCT within the specific context of Taiwan. This study is designed to address this gap by conducting a comprehensive analysis of the cost-effectiveness of LDCT and chest X-ray (CXR) as screening methods for lung cancer. Methods: Markov decision model simulation was used to estimate the cost-effectiveness of biennial screening with LDCT and CXR based on a health provider perspective. Inputs are based on probabilities, health status utility (quality-adjusted life years (QALYs)), costs of lung cancer screening, diagnosis, and treatment from the literatures, and expert opinion. A total of 1,000 simulations and five cycles of Markov bootstrapping simulations were performed to compare the incremental cost-utility ratio (ICUR) of these two screening strategies. Probability and one-way sensitivity analyses were also performed. Results: The ICUR of early lung cancer screening compared LDCT to CXR is $-24,757.65/QALYs, and 100% of the probability agree to adopt it under a willingness-to-pay (WTP) threshold of the Taiwan gross domestic product (GDP) per capita ($35,513). The one-way sensitivity analysis also showed that ICUR depends heavily on recall rate. Based on the prevalence rate of 39.7 lung cancer cases per 100,000 people in 2020, it could be estimated that LDCT screening for high-risk populations could save $17,154,115. Conclusion: LDCT can detect more early lung cancers, reduce mortality and is cost-saving than CXR in a long-term simulation of Taiwan's healthcare system. This study provides valuable insights for healthcare decision-makers and suggests analyzing cost-effectiveness for additional variables in future research.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda