Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 624(7992): 672-681, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935376

RESUMEN

Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.


Asunto(s)
Proteínas de Unión al GTP , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sitios de Unión , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Ligandos , Simulación de Dinámica Molecular , Mutación , Polifarmacología , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Especificidad de la Especie , Especificidad por Sustrato
2.
Anal Chem ; 96(28): 11448-11454, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38960938

RESUMEN

Within pharmaceutical research, ensuring the enantiomeric purity of chiral compounds is critical. Specifically, chiral amines are a crucial category of compounds, due to their extensive therapeutic uses. However, the enantiomeric analysis of these compounds, particularly those with significant steric hindrance, remains a challenge. To address this issue, our research introduces a novel chiral 19F-tagged NNO palladium pincer probe, strategically engineered with an open binding site to accommodate bulky amines. This probe facilitates the enantiodifferentiation of such amines, as evidenced by the distinct 19F NMR signals generated by the enantiomers. Moreover, our findings highlight the probe's applicability in the chiral discrimination of various psychoactive substances, underscoring its potential for the identification of illegal stimulant use and contributing to forensic investigations.

3.
J Chem Inf Model ; 64(13): 5273-5284, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38921627

RESUMEN

Toll-like receptor 4 (TLR4) is pivotal as an innate immune receptor, playing a critical role in mediating neuropathic pain and drug addiction through its regulation of the neuroinflammatory response. The nonclassical (+)-opioid isomers represent a unique subset of TLR4 antagonists known for their effective blood-brain barrier permeability. Despite growing interest in the structure-activity relationship of these (+)-opioid-based TLR4 antagonists, the specific impact of heteroatoms on their TLR4 antagonistic activities has not been fully explored. This study investigated the influence of the hydroxyl group at C14 in six (+)-opioid TLR4 antagonists (1-6) using wet-lab experiments and in silico simulations. The corresponding C14-deoxy derivatives (7-12) were synthesized, and upon comparison with their corresponding counterparts (1-6), it was discovered that their TLR4 antagonistic activities were significantly diminished. Molecular dynamics simulations showed that the (+)-opioid TLR4 antagonists (1-6) possessed more negative binding free energies to the TLR4 coreceptor MD2, which was responsible for ligand recognition. This was primarily attributed to the formation of a hydrogen bond between the hydroxyl group at the C-14 position of the antagonists (1-6) and the R90 residue of MD2 during the binding process. Such an interaction facilitated the entry and subsequent binding of these molecules within the MD2 cavity. In contrast, the C14-deoxy derivatives (7-12), lacking the hydroxyl group at the C-14 position, missed this crucial hydrogen bond interaction with the R90 residue of MD2, leading to their egression from the MD2 cavity during simulations. This study underscores the significant role of the C14 hydroxyl moiety in enhancing the effectiveness of (+)-opioid TLR4 antagonists, which provides insightful guidance for designing future (+)-isomer opioid-derived TLR4 antagonists.


Asunto(s)
Simulación de Dinámica Molecular , Receptor Toll-Like 4 , Receptor Toll-Like 4/antagonistas & inhibidores , Receptor Toll-Like 4/metabolismo , Analgésicos Opioides/química , Analgésicos Opioides/farmacología , Humanos , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Antígeno 96 de los Linfocitos/antagonistas & inhibidores , Antígeno 96 de los Linfocitos/metabolismo , Antígeno 96 de los Linfocitos/química
4.
J Chem Inf Model ; 64(13): 5253-5261, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973303

RESUMEN

Psychoactive substances, including morphine and methamphetamine, have been shown to interact with the classic innate immune receptor Toll-like receptor 4 (TLR4) and its partner protein myeloid differentiation protein 2 (MD2) in a nonenantioselective manner. (-)-Nicotine, the primary alkaloid in tobacco and a key component of highly addictive cigarettes, targets the TLR4/MD2, influencing TLR4 signaling pathways. Existing as two enantiomers, the stereoselective recognition of nicotine by TLR4/MD2 in the context of the innate immune response remains unclear. In this study, we synthesized (+)-nicotine and investigated its effects alongside (-)-nicotine on lipopolysaccharide (LPS)-induced TLR4 signaling. (-)-Nicotine dose-dependently inhibited proinflammatory factors such as tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), and cyclooxygenase-2 (COX-2). In contrast, (+)-nicotine showed no such inhibitory effects. Molecular dynamics simulations revealed that (-)-nicotine exhibited a stronger affinity with the TLR4 coreceptor MD2 than (+)-nicotine. Additionally, in silico simulations revealed that both nicotine enantiomers initially attach to the entrance of the MD2 cavity, creating a metastable state before they fully enter the cavity. In the metastable state, (-)-nicotine established more stable interactions with the surrounding residues at the entrance of the MD2 cavity compared to those of (+)-nicotine. This highlights the crucial role of the MD2 cavity entrance in the chiral recognition of nicotine. These findings provide valuable insights into the distinct interactions between nicotine enantiomers and the TLR4 coreceptor MD2, underscoring the enantioselective effect of nicotine on modulating TLR4 signaling.


Asunto(s)
Antígeno 96 de los Linfocitos , Simulación de Dinámica Molecular , Nicotina , Transducción de Señal , Receptor Toll-Like 4 , Receptor Toll-Like 4/metabolismo , Nicotina/farmacología , Nicotina/química , Nicotina/análogos & derivados , Nicotina/metabolismo , Antígeno 96 de los Linfocitos/metabolismo , Antígeno 96 de los Linfocitos/química , Transducción de Señal/efectos de los fármacos , Estereoisomerismo , Humanos , Lipopolisacáridos/farmacología , Simulación del Acoplamiento Molecular , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/química
5.
Biochem Cell Biol ; 101(2): 148-159, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36861809

RESUMEN

Nuclear receptor 4A1 (NR4A1), a member of the NR4A subfamily, acts as a gene regulator in a wide range of signaling pathways and responses to human diseases. Here, we provide a brief overview of the current functions of NR4A1 in human diseases and the factors involved in its function. A deeper understanding of these mechanisms can potentially improve drug development and disease therapy.


Asunto(s)
Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Transducción de Señal , Humanos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética
6.
Phys Chem Chem Phys ; 25(43): 29656-29663, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37882236

RESUMEN

A toll-like receptor 4/myeloid differentiation factor 2 complex (TLR4/MD2) has been identified as a non-classical opioid receptor capable of recognizing morphine isomers and activating microglia in a non-enantioselective manner. Additionally, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), the major metabolites of morphine, possess similar chemical structures but exhibit distinct effects on TLR4 signaling. However, the specific mechanisms by which morphine isomers and morphine metabolites are recognized by the innate immune receptor TLR4/MD2 are not well understood. Herein, molecular dynamics simulations were performed to dissect the molecular recognition of TLR4/MD2 with morphine isomers, M3G and M6G. Morphine and its (+)-enantiomer, dextro-morphine ((+)-morphine), were found to have comparable binding free energies as well as similar interaction modes when interacting with (TLR4/MD2)2. Binding with morphine and (+)-morphine caused the motion of the F126 loop towards the inside of the MD2 cavity, which stabilizes (TLR4/MD2)2 with similar dimerization interfaces. The binding free energies of M3G and M6G with (TLR4/MD2)2, while lower than those of morphine isomers, were comparable to each other. However, the binding behaviors of M3G and M6G exhibited contrasting patterns when interacting with (TLR4/MD2)2. The glucuronide group of M3G bound to the gating loop of MD2 and formed strong interactions with TLR4*, which stabilizes the active heterotetrameric complex. In contrast, M6G was situated in cavity A of MD2, where the critical interactions between M6G and the residues of TLR4* were lost, resulting in fluctuation of (TLR4/MD2)2 away from the active conformation. These results indicate that the pivotal interactions at the dimerization interface between MD2 and TLR4* in M6G-bound (TLR4/MD2)2 were considerably weaker than those in M3G-bound (TLR4/MD2)2, which partially explains why M6G fails to activate TLR4 signaling. The discoveries from this study will offer valuable insights for the advancement of next-generation TLR4 small molecule modulators based on opioids.


Asunto(s)
Morfina , Receptor Toll-Like 4 , Morfina/metabolismo , Derivados de la Morfina , Simulación por Computador , Inmunidad Innata
7.
J Neurochem ; 157(3): 611-623, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33453127

RESUMEN

Artemisinin and its derivatives have been the frontline drugs for treating malaria. In addition to the antiparasitic effect, accumulating evidence shows that artemisinins can alleviate neuroinflammatory responses in the central nervous system (CNS). However, the precise mechanisms underlying their anti-neuroinflammatory effects are unclear. Herein we attempted to delineate the molecule target of artemisinin in microglia. In vitro protein intrinsic fluorescence titrations and saturation transfer difference (STD)-NMR showed the direct binding of artemisinin to Toll-like receptor TLR4 co-receptor MD2. Cellular thermal shift assay (CETSA) showed that artemisinin binding increased MD2 stability, which implies that artemisinin directly binds to MD2 in the cellular context. Artemisinin bound MD2 showed much less collapse during the molecular dynamic simulations, which supports the increased stability of MD2 upon artemisinin binding. Flow cytometry analysis showed artemisinin inhibited LPS-induced TLR4 dimerization and endocytosis in microglial BV-2 cells. Therefore, artemisinin was found to inhibit the TLR4-JNK signaling axis and block LPS-induced pro-inflammatory factors nitric oxide, IL-1ß and TNF-α in BV-2 cells. Furthermore, artemisinin restored LPS-induced decrease of junction proteins ZO-1, Occludin and Claudin-5 in primary brain microvessel endothelial cells, and attenuated LPS-induced blood-brain barrier disruption in mice as assessed by Evans blue. In all, this study unambiguously adds MD2 as a direct binding target of artemisinin in its anti-neuroinflammatory function. The results also suggest that artemisinin could be repurposed as a potential therapeutic intervention for inflammatory CNS diseases.


Asunto(s)
Artemisininas/farmacología , Barrera Hematoencefálica/efectos de los fármacos , Antígeno 96 de los Linfocitos/efectos de los fármacos , Microglía/efectos de los fármacos , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Línea Celular , Pérdida de Líquido Cefalorraquídeo , Endocitosis/efectos de los fármacos , Interleucina-1beta/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación de Dinámica Molecular , Óxido Nítrico/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
8.
Acc Chem Res ; 53(5): 1046-1055, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32233400

RESUMEN

Toll-like receptors (TLRs) are the "gatekeepers" of the immune system in humans and other animals to protect the host from invading bacteria, viruses, and other microorganisms. Since TLR4 was discovered as the receptor for endotoxin in the late 1990s, significant progress has been made in exploiting an understanding of the function of TLRs. The TLR-signaling pathway is crucial for the induction and progression of various diseases. Dysregulation of TLR signaling contributes to numerous pathological conditions, including chronic inflammation, sepsis, cancers, asthma, neuropathic pain, drug addiction, and autoimmune diseases. Therefore, manipulation of TLR signaling is promising to halt their activity in inflammatory diseases, to enhance their signaling to fight cancers, to modulate their role in autoimmune diseases, and to suppress them to treat drug addiction. TLR agonists have demonstrated great potential as antimicrobial agents and vaccine adjuvants, whereas TLR antagonists are being developed as reagents and drugs to dampen immune responses. Because of their pivotal potential therapeutic applications, fruitful small-molecule compounds and peptide fragments have been discovered, and many of them have advanced to various stages of clinical trials (though only two have been approved by the Food and Drug Administration (FDA): MPLA as a TLR4 agonist and imiquimod as a TLR7 agonist).In this Account, we focus on the progress in developing TLR signaling pathway modulators (mainly focused on the Yin and Wang laboratories) over the past decade and highlight the accomplishments and currently existing challenges in the development of TLR modulators. First, we briefly describe the members of the human TLR family along with their natural modulators. Second, we illustrate our endeavors to discover TLR-targeted agents using comprehensive approaches. Specifically, a discussion of identification and characterization of new chemical entities, determination of modes of action, and further applications is presented. For instance, the TLR3 antagonist was first discovered through in silico screening, and the inhibitory activity was confirmed in murine cells. Considering the glycosylation on TLR3, a new direction for TLR3 modulator design was pointed out to target asparagine glycosylation. We have particularly focused on the discovery of TLR4 antagonists and have assessed their great potential in the clinical treatment of drug addiction and alcohol use disorders. In addition, we discuss multiple other popular and robust techniques for modulator discovery. Not only small organic modulators but also stapled peptides and peptidomimetics will attract more and more attention in the future. Finally, current challenges, opportunities, and future perspectives for TLR-targeted agents are also discussed.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/farmacología , Receptores Toll-Like/metabolismo , Animales , Humanos , Transducción de Señal/efectos de los fármacos
9.
Org Biomol Chem ; 19(43): 9439-9447, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34679152

RESUMEN

A modular strategy for meroterpenoid-type marine natural products has been developed from commercially available (+)-sclareolide using a palladium-catalyzed tandem carbene migratory insertion as one of the key steps. Its applicability is showcased by the formal synthesis of (-)-pelorol and 9-epi-pelorol and the concise total synthesis of (+)-yahazunone and (+)-yahazunol. It is worth noting that the formal synthesis of (-)-pelorol and 9-epi-pelorol was achieved by controlling the reaction sequence of hydrogenation and cyclization.


Asunto(s)
Productos Biológicos
10.
Bioorg Med Chem ; 39: 116131, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33852975

RESUMEN

Cannabidiol (CBD) and dihydroartemisinin (DHA) can alleviate neuroinflammatory responses. However, they show cytotoxicity, which severely limits their therapeutic windows. Therefore, there is a great need to develop neuroprotective agents with improved safety. Drug-drug conjugate is an emerging approach for enhancing therapeutic index. Herein, the development, synthesis, and the pharmacological characterization of CBD-DHA conjugates were performed. Meanwhile, the combination of CBD and DHA as separate entities was also quantitatively analyzed for direct comparison with CBD-DHA conjugates. In this study, BV-2 microglial cell line was used to mimic primary microglia and the effects of CBD, DHA, the combination of CBD and DHA, as well as CBD-DHA conjugates on LPS-activated signaling molecules and pro-inflammatory factors were assessed. The interaction of CBD and DHA in inhibiting LPS-induced nitric oxide (NO) production was found to be additive. In contrast, DHA was found to synergize with CBD in inhibiting BV-2 cellular viability which implies that the combination of CBD and DHA amplifies their cytotoxicity. CBD-DHA conjugate C3D eliminated the cytotoxicity associated with single CBD/DHA use without significantly compromising the anti-neuroinflammation activity. C3D was more potent than C2D and C4D in inhibiting LPS-induced NO and mRNAs of iNOS and IL-1ß, which implies that the linker length is critical for CBD-DHA conjugates' anti-inflammatory activities. Further signaling characterizations showed that C3D inhibited LPS-induced NF-κB but not MAPKs activation in BV-2 cells, therefore blocking LPS-induced neuroinflammation. This work provides a good example that conjugated drug-drug approach may improve the therapeutic index by increasing the maximum tolerated concentration/dose compared to traditional combination strategy.


Asunto(s)
Antiinflamatorios/farmacología , Artemisininas/química , Cannabidiol/química , Inflamación/prevención & control , Sistema Nervioso/efectos de los fármacos , Animales , Artemisininas/farmacología , Cannabidiol/farmacología , Línea Celular , Interacciones Farmacológicas , Quimioterapia Combinada , Sistema Nervioso/patología
11.
Phys Chem Chem Phys ; 23(21): 12260-12269, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34013938

RESUMEN

Nalmefene is an opiate derivative having a similar structure to naltrexone. Recent evidence suggests that nalmefene, acting as the innate immune protein toll-like receptor 4 (TLR4) antagonist, effectively reduces the injury of lung ischemia-reperfusion and prevents neuroinflammation. However, the molecular recognition mechanism, especially the enantioselectivity, of nalmefene by the innate immune receptor is not well understood. Herein in vitro assays and in silico simulations were performed to dissect the innate immune recognition of nalmefene at the atomic, molecular, and cellular levels. Biophysical binding experiments and molecular dynamic simulations provide direct evidence that (-)-nalmefene and (+)-nalmefene bind to the hydrophobic cavity of myeloid differentiation protein 2 (MD-2) and behave similarly, which is primarily driven by hydrophobic interactions. The inhibition activity and the calculated binding free energies show that no enantioselectivity was observed during the interaction of nalmefene with MD-2 as well as the inhibition of TLR4 signaling. Interestingly, nalmefene showed ∼6 times better TLR4 antagonisic activity than naltrexone, indicating that the bioisosteric replacement with the methylene group is critical for the molecular recognition of nalmefene by MD-2. In all, this study provides molecular insight into the innate immune recognition of nalmefene, which demonstrates that nalmefene is non-enantioselectively sensed by MD-2.


Asunto(s)
Antígeno 96 de los Linfocitos/antagonistas & inhibidores , Naltrexona/análogos & derivados , Antagonistas de Narcóticos/farmacología , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Células Cultivadas , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Antígeno 96 de los Linfocitos/genética , Antígeno 96 de los Linfocitos/aislamiento & purificación , Ratones , Conformación Molecular , Simulación de Dinámica Molecular , Naltrexona/química , Naltrexona/farmacología , Antagonistas de Narcóticos/química , Transducción de Señal/efectos de los fármacos , Estereoisomerismo , Termodinámica
12.
Bioorg Chem ; 114: 105107, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34175717

RESUMEN

Dihydroartemisinin (DHA), a natural product isolated from the traditional Chinese herb Artemisia annua and one of the clinical frontline drugs against malarial infections, has recently been discovered as a Toll-like Receptor 4 (TLR4) antagonist. However, the TLR4 antagonistic activity of DHA is modest and it exhibits cellular toxicity. In this work, the structure-activity relationship (SAR) of DHA as TLR4 antagonist was explored. Since destroying the sesquiterpene endoperoxide scaffold substantially compromised the TLR4 antagonistic activity and molecular dynamics analysis showed that the C-10 hydroxyl group formed a hydrogen bond with E72 of myeloid differentiation factor 2 (MD2) to prevent it moving deeper into MD2, SAR of DHA was focused on the C-10 hemiacetal position. With extending the length of the linear alkane chain at C10 position, the TLR4 antagonistic activity of DHA analogs increased first and then decreased with the best TLR4 antagonism occurring at the length of the carbon chain of 3-4 carbons. In contrast, the cellular toxicity of DHA analogs was raised with the increasing length of the linear alkane chain. The TLR4 antagonistic activity of DHA derivatives with substituted halogen as the terminal functional group decreased with the decrease of electronegativity of the substituted halogen, which implies the electron-rich functional group at the end of the alkane chain appears preferred. Therefore, DHA derivative 2k with alkynyl as the end functional group, exhibited 14 times more potent TLR4 antagonistic activity than DHA. Moreover, 2k showed less cellular toxicity than DHA. Cellular signaling characterizations indicated that 2k inhibited LPS-induced TLR4 dimerization and endocytosis and suppressed LPS-induced NF-κB but not MAPKs activation, culminating in blocking LPS-induced TLR4 signaling downstream pro-inflammatory factors NO and IL-1ß. Further, 2k was active in vivo; it significantly increased and prolonged morphine analgesia. Collectively, this study provides a structural guidance to reposition DHA derivatives as TLR4 antagonists.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Artemisininas/síntesis química , Artemisininas/química , Línea Celular , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Relación Estructura-Actividad , Receptor Toll-Like 4/metabolismo
13.
J Chem Inf Model ; 60(3): 1607-1613, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31935095

RESUMEN

Methamphetamine (METH) is one of the highly addictive nonopioid psychostimulants, acting as a xenobiotic-associated molecular pattern (XAMP) to target TLR4 and activate microglia. However, the molecule recognition of METH by innate immune receptor TLR4/MD-2 is not well-understood. METH exists in two enantiomeric forms, and it is unclear whether the TLR4 innate immune recognition with METH is stereoselective. Herein, molecular dynamics (MDs) simulations were performed to dissect the recognition of (+)-METH and (-)-METH by TLR4/MD-2 at the atomic level. Amphetamine (AMPH), which is an analogue of METH, was also investigated for comparison. Computational simulations indicate that METH binds into the interaction interface between MD-2 as well as TLR4* that is from the adjacent copy of TLR4-MD-2, therefore stabilizing the active heterotetramer (TLR4/MD-2)2 complex. The calculated binding free energies and potential of mean force (PMF) values show that (-)-METH and (+)-METH have similar TLR4/MD-2 binding affinity. Further dynamics analyses of bindings with TLR4/MD-2 indicate that (-)-METH and (+)-METH behave similarly. Unlike the stereoselective neuron-stimulating activities of METH, no enantioselectivity was observed for METH interacting with TLR4/MD-2 complex as well as activating TLR4 signaling. Compared to METH, AMPH showed much weaker interactions with TLR4/MD-2, indicating that the substituted methyl group is critical in the molecular recognition of METH by TLR4/MD-2. In all, this study provides molecular insight into the innate immune recognition of METH, which demonstrates that METH could be nonenantioselectively sensed by TLR4/MD-2.


Asunto(s)
Metanfetamina , Receptor Toll-Like 4 , Lipopolisacáridos/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Transducción de Señal , Receptor Toll-Like 4/metabolismo
14.
J Org Chem ; 82(23): 12914-12919, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29083172

RESUMEN

An enantiospecific semisynthesis of puupehedione was achieved from sclareolide in only 7 steps with an overall yield of 25%. The key drimanal trimethoxystyrene skeleton was constructed by the palladium-catalyzed cross-coupling reaction of an aryl iodine and a drimanal hydrazone. An in situ CAN-oxidation/intramolecular oxa-Stork-Danheiser transposition tandem reaction was used as a powerful tool to install concurrently the C and D rings of puupehedione in a one-pot fashion. Its applicability was also showcased by the semisynthesis of puupehenone and puupehenol.


Asunto(s)
Productos Biológicos/química , Sesquiterpenos/química , Estructura Molecular , Sesquiterpenos/síntesis química , Estereoisomerismo
15.
Angew Chem Int Ed Engl ; 56(44): 13747-13751, 2017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-28892585

RESUMEN

Recent studies by Stoltz, Grubbs et al. have shown that triethylsilane and potassium tert-butoxide react to form a highly attractive and versatile system that shows (reversible) silylation of arenes and heteroarenes as well as reductive cleavage of C-O bonds in aryl ethers and C-S bonds in aryl thioethers. Their extensive mechanistic studies indicate a complex network of reactions with a number of possible intermediates and mechanisms, but their reactions likely feature silyl radicals undergoing addition reactions and SH 2 reactions. This paper focuses on the same system, but through computational and experimental studies, reports complementary facets of its chemistry based on a) single-electron transfer (SET), and b) hydride delivery reactions to arenes.

16.
Sci Rep ; 14(1): 24787, 2024 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-39433882

RESUMEN

As an ultra-early response gene, Nuclear receptor 4A1 (NR4A1) has been reported to be involved in the development of various diseases through various pathological pathways, but its specific mechanism in chronic kidney disease (CKD) is unknown currently. Our study showed that the expression of NR4A1 was reduced in unilateral ureteral obstruction (UUO) mice and it could exacerbate UUO-induced renal pathological injury when knocked down NR4A1 in UUO mice. We found that the knockdown of NR4A1 could promote angiogenesis, renal inflammation, and cell apoptosis to aggravate renal fibrosis induced by UUO. As an agonist of NR4A1, Cytosporone B (Csn-B) could inhibit the renal fibrosis by attenuating angiogenesis, renal inflammation and cell apoptosis. In addition, the PI3K/AKT pathway was activated with NR4A1 knockdown in vivo and in vitro experiments. In conclusion, our study demonstrates that NR4A1 can ameliorate renal fibrosis. Furthermore, we speculate that its underlying mechanism may be related to the activation of PI3K/AKT pathway according to our present results.


Asunto(s)
Riñón , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Transducción de Señal , Obstrucción Ureteral , Animales , Masculino , Ratones , Apoptosis , Modelos Animales de Enfermedad , Fibrosis , Técnicas de Silenciamiento del Gen , Riñón/patología , Riñón/metabolismo , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/etiología , Ratones Endogámicos C57BL , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/patología , Obstrucción Ureteral/metabolismo
17.
Nefrologia (Engl Ed) ; 44(2): 139-149, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38697694

RESUMEN

Losartan is widely used in the treatment of chronic kidney disease (CKD) and has achieved good clinical efficacy, but its exact mechanism is not clear. We performed high-throughput sequencing (HTS) technology to screen the potential target of losartan in treating CKD. According to the HTS results, we found that the tumor necrosis factor (TNF) signal pathway was enriched. Therefore, we conducted in vivo and in vitro experiments to verify it. We found that TNF signal pathway was activated in both unilateral ureteral obstruction (UUO) rats and human proximal renal tubular epithelial cells (HK-2) treated with transforming growth factor-ß1 (TGF-ß1), while losartan can significantly inhibit TNF signal pathway as well as the expression of fibrosis related genes (such as COL-1, α-SMA and Vimentin). These data suggest that losartan may ameliorate renal fibrosis through modulating the TNF pathway.


Asunto(s)
Fibrosis , Losartán , Transducción de Señal , Factor de Necrosis Tumoral alfa , Losartán/farmacología , Losartán/uso terapéutico , Animales , Transducción de Señal/efectos de los fármacos , Ratas , Masculino , Humanos , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Ratas Sprague-Dawley , Riñón/patología , Riñón/efectos de los fármacos , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/etiología
18.
Phytomedicine ; 130: 155788, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38838634

RESUMEN

BACKGROUND: Alzheimer's disease (AD), the most common neurodegenerative disorder, affects a broad spectrum of aging populations. AD is characterized by pathological amyloid-ß (Aß) plaques and neurofibrillary tangles, leading to neural degeneration and cognitive decline. The lack of effective treatments for AD highlights the urgent need for novel therapeutic agents, particularly in the early stages. Dimethylsulfoniopropionate (DMSP) is a natural marine compound with antioxidant and neuroprotective properties. However, studies on the efficacy of DMSP in the treatment of AD and its associated mechanisms are limited. PURPOSE: This study aimed to explore the therapeutic effects and mechanisms of action of DMSP as an AD treatment using a preclinical 3 × Tg-AD mouse model. METHODS: The research involved administering DMSP (7 µg/mL and 11 µg/mL in drinking water) to four-month-old 3 × Tg-AD mice consecutively for three months. The Y-maze test, novel object recognition test, and Morris water maze test were used to assess memory and learning ability. The relative expression levels and distribution of proteins relevant to Aß and tau pathology, synapses, and glial cells were analyzed using western blotting and immunofluorescence assays. Additionally, proteomic and bioinformatics approaches were used to explore the potential targets of DMSP treatment. RESULTS: DMSP-treated AD mice showed significantly enhanced cognitive function, suggesting that DMSP mitigates memory and learning impairments in AD. Moreover, DMSP diminished the abnormal accumulation of Aß and phosphorylated tau in both the cortex and hippocampus, which are crucial hallmarks of AD pathology. In addition to its neuroprotective properties, DMSP restored synaptic density and the expression of synaptic and neuronal proteins, which are essential for proper brain function. DMSP displayed anti-inflammatory properties, as evidenced by its ability to suppress inflammatory astrocytes and maintain microglial homeostasis. Notably, DMSP facilitated the maturation of oligodendrocytes (OLs) from oligodendrocyte progenitor cells (OPCs), a critical process in the development of the brain myelination architecture. Proteomic analysis revealed that DMSP positively influenced biological processes crucial for oligodendrocyte development, myelination, and axonal ensheathment, which are often compromised in patients with AD. Protein validation and brain tissue staining supported the role of DMSP in preserving myelin enrichment and sheath integrity. These therapeutic effects were largely attributed to the enhanced expression of myelin-associated glycoprotein (Mag) and tetraspanin Cd9. CONCLUSION: Overall, our findings highlight DMSP as a promising novel therapeutic candidate for AD, offering multifaceted benefits in cognitive and memory enhancement, reduction of Aß and tau pathology, neuronal synapse protection, anti-inflammatory effects, and myelin sheath restoration as an innovative target compared to other studies. In addition to being a potentially effective treatment for AD, DMSP may also have the potential to address other neurodegenerative diseases that are closely associated with myelin impairment.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Ratones Transgénicos , Fármacos Neuroprotectores , Compuestos de Sulfonio , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Compuestos de Sulfonio/farmacología , Ratones , Fármacos Neuroprotectores/farmacología , Péptidos beta-Amiloides/metabolismo , Masculino , Proteínas tau/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo
19.
Int Urol Nephrol ; 56(8): 2623-2633, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38498274

RESUMEN

Chronic kidney disease (CKD), including chronic glomerulonephritis, IgA nephropathy and diabetic nephropathy, are common chronic diseases characterized by structural damage and functional decline of the kidneys. The current treatment of CKD is symptom relief. Several studies have reported that the phosphatidylinositol 3 kinases (PI3K)/protein kinase B (Akt) signaling pathway is a pathway closely related to the pathological process of CKD. It can ameliorate kidney damage by inhibiting this signal pathway which is involved with inflammation, oxidative stress, cell apoptosis, epithelial mesenchymal transformation (EMT) and autophagy. This review highlights the role of activating or inhibiting the PI3K/Akt signaling pathway in CKD-induced inflammatory response, apoptosis, autophagy and EMT. We also summarize the latest evidence on treating CKD by targeting the PI3K/Akt pathway, discuss the shortcomings and deficiencies of PI3K/Akt research in the field of CKD, and identify potential challenges in developing these clinical therapeutic CKD strategies, and provide appropriate solutions.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Insuficiencia Renal Crónica , Transducción de Señal , Humanos , Insuficiencia Renal Crónica/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis , Autofagia/fisiología , Transición Epitelial-Mesenquimal , Estrés Oxidativo
20.
Int Immunopharmacol ; 139: 112705, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39029235

RESUMEN

Fibrosis is not a disease but rather an outcome of the pathological tissue repair response. Many myofibroblasts are activated which lead to the excessive accumulation of extracellular matrix components such as collagen and fibronectin with fibrosis. A variety of organs, including kidney, liver, lung, heart and skin, can undergo fibrosis under the stimulation of exogenous or endogenous pathogenic factors. The orphan nuclear receptor 4 group A1 (NR4A1) and nuclear receptor 4 group A2(NR4A2)are belong to the nuclear receptor subfamily and inhibit the occurrence and development of fibrosis. NR4A1 is an inhibitory factor of TGF-ß signaling transduction. Overexpression of NR4A1 in fibroblasts can reduce TGF-ß induced collagen deposition and fibrosis related gene expression. Here, we summarize the current research progress on the NR4A1/2 and fibrosis, providing reference for the treatment of fibrosis.


Asunto(s)
Fibrosis , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Humanos , Animales , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda