Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Neurosci ; 36(6): 1996-2006, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26865622

RESUMEN

Different subregions of the prefrontal cortex (PFC) contribute to the ability to respond flexibly to changes in reward contingencies, with the medial versus orbitofrontal cortex (OFC) subregions contributing differentially to processes such as set-shifting and reversal learning. To date, the manner in which these regions may facilitate reversal learning in situations involving reward uncertainty remains relatively unexplored. We investigated the involvement of five distinct regions of the rat OFC (lateral and medial) and medial PFC (prelimbic, infralimbic, and anterior cingulate) on probabilistic reversal learning wherein "correct" versus "incorrect" responses were rewarded on 80% and 20% of trials, respectively. Contingencies were reversed repeatedly within a session. In well trained rats, inactivation of the medial or lateral OFC induced dissociable impairments in performance (indexed by fewer reversals completed) when outcomes were probabilistic, but not when they were assured. Medial OFC inactivation impaired probabilistic learning during the first discrimination, increased perseverative responding and reduced sensitivity to positive and negative feedback, suggestive of a deficit in incorporating information about previous action outcomes to guide subsequent behavior. Lateral OFC inactivation preferentially impaired performance during reversal phases. In contrast, prelimbic inactivation caused an apparent improvement in performance by increasing the number of reversals completed. This was associated with enhanced sensitivity to recently rewarded actions and reduced sensitivity to negative feedback. Infralimbic inactivation had no effect, whereas the anterior cingulate appeared to play a permissive role in this form of reversal learning. These results clarify the dissociable contributions of different regions of the frontal lobes to probabilistic learning. SIGNIFICANCE STATEMENT: The ability to adjust behavior in response to changes involving uncertain or probabilistic reward contingencies is an essential survival skill that is impaired in a variety of psychiatric disorders. It is well established that different forms of cognitive flexibility are mediated by anatomically distinct regions of the frontal lobes when reinforcement contingencies are assured, however, less is known about the contribution of these regions to probabilistic reinforcement learning. Here we show that different regions of the orbitofrontal and medial prefrontal cortex make distinct contributions to probabilistic reversal learning. These findings provide novel information about the complex interplay between frontal lobe regions in mediating these processes and accordingly provide insight into possible pathophysiology that underlies impairments in cognitive flexibility observed in mental illnesses.


Asunto(s)
Lóbulo Frontal/fisiología , Corteza Prefrontal/fisiología , Aprendizaje Inverso/fisiología , Animales , Baclofeno/farmacología , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología , Retroalimentación Psicológica , Lóbulo Frontal/efectos de los fármacos , Agonistas del GABA/farmacología , Sistema Límbico/efectos de los fármacos , Sistema Límbico/fisiología , Masculino , Muscimol/farmacología , Corteza Prefrontal/efectos de los fármacos , Desempeño Psicomotor/efectos de los fármacos , Desempeño Psicomotor/fisiología , Ratas , Ratas Long-Evans , Aprendizaje Inverso/efectos de los fármacos , Recompensa , Incertidumbre
2.
Front Psychol ; 12: 571423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276459

RESUMEN

The Iowa Gambling Task (IGT) is a widely used measure of decision making, but its value in signifying behaviors associated with adverse, "real-world" consequences has not been consistently demonstrated in persons who are precariously housed or homeless. Studies evaluating the ecological validity of the IGT have primarily relied on traditional IGT scores. However, computational modeling derives underlying component processes of the IGT, which capture specific facets of decision making that may be more closely related to engagement in behaviors associated with negative consequences. This study employed the Prospect Valence Learning (PVL) model to decompose IGT performance into component processes in 294 precariously housed community residents with substance use disorders. Results revealed a predominant focus on gains and a lack of sensitivity to losses in these vulnerable community residents. Hypothesized associations were not detected between component processes and self-reported health-risk behaviors. These findings provide insight into the processes underlying decision making in a vulnerable substance-using population and highlight the challenge of linking specific decision making processes to "real-world" behaviors.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda