RESUMEN
Squamous cell carcinomas are the most common head and neck malignancies. Significant progress has been made in standard therapeutic methods combining surgery, radiation, and chemotherapy. Nevertheless, the 5-year survival rate remains at 40-50%. Immune checkpoint inhibitors (ICIs) are a new strategy for treating head and neck squamous cell carcinomas (HNSCCs). Still, the overall response and effective rates are poor, as HNSCCs are 'cold' tumors with an immunosuppressive tumor microenvironment (TME), limiting ICI's beneficial effects. In this case, transforming the tumor suppression microenvironment before using ICIs could be helpful. Oncolytic viruses (OVs) can transform cold tumors into hot tumors, improving the situation. Talimogene laherparepvec (T-VEC), oncolytic immunotherapy authorized for advanced melanoma, also showed good safety and antitumor activity in treating head and neck cancer and pancreatic cancer. In combination with pembrolizumab, T-Vec may have more anticancer efficacy than either drug alone. Therefore, understanding the mechanisms underpinning OVs and their potential synergism with ICIs could benefit patients with HNSCC.
RESUMEN
BACKGROUND: Fibrinogen-like-protein 1 (FGL1), a member of the fibrinogen-related protein (FREP) family, is a major ligand of the immune inhibitory receptor lymphocyte-activation gene 3 (LAG-3). While FGL1 is strongly implicated in the development and prognosis of a variety of diseases, its role in hepatocellular carcinoma (HCC) is still disputed. Therefore, the role of FGL1 expression in the progression and prognosis of HCC was investigated. METHODS AND RESULTS: In the present study, bioinformatics analysis was first used to probe the expression profile of FGL1 in multiple malignant tumor tissues and paired normal tissues, and to explore the possible relationship between FGL1 and prognosis of HCC patients. Thereafter, the expression levels of FGL1 were determined and compared in human HCC cell lines, HCC tissues, peri-tumor tissues and normal liver tissues by western blot analysis. Furthermore, tissue microarrays were used to detect the expression of FGL1 through immunohistochemical staining and to verify whether the FGL1 expression level was associated with clinicopathological features and the prognosis of HCC patients. The results showed that FGL1 was downregulated significantly in most of the HCC cells lines and HCC tissues, corresponding to the results of the bioinformatics and western blot analyses. FGL1 expression level in HCC was found to be correlated to Edmondson grade and metastasis of the HCC. Additionally, high FGL1 expression was associated with better overall survival in HCC patients, suggesting that FGL1 could function as a tumor suppressor. CONCLUSIONS: The expression level of FGL1 can be correlated with the progression and prognosis of HCC, suggesting its potential as a prognostic biomarker.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/metabolismo , Fibrinógeno/genética , Fibrinógeno/metabolismo , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Neoplasias Hepáticas/metabolismoRESUMEN
BACKGROUND: Inspired by nature, the biomimetic approach has been incorporated into drug nanocarriers for cancer targeted chemotherapy. The nanocarriers are cloaked in cell membranes, which enables them to incorporate the functions of natural cells. KEY SCIENTIFIC CONCEPTS OF REVIEW: Nanocarriers surface engineered with cell membranes have emerged as a fascinating source of materials for cancer targeted chemotherapy. A distinctive characteristic of cell membrane-coated nanocarriers (CMCNs) is that they include carbohydrates, proteins, and lipids, in addition to being biocompatible. CMCNs are capable of interacting with the complicated biological milieu of the tumor because they contain the signaling networks and intrinsic functions of their parent cells. Numerous cell membranes have been investigated for the purpose of masking nanocarriers with membranes, and various tumor-targeting methods have been devised to improve cancer targeted chemotherapy. Moreover, the diverse structure of the membrane from different cell sources broadens the spectrum of CMCNs and offers an entirely new class of drug-delivery systems. AIM OF REVIEW: This review will describe the manufacturing processes for CMCNs and the therapeutic uses for different kinds of cell membrane-coated nanocarrier-based drug delivery systems, as well as addressing obstacles and future prospects.
Asunto(s)
Membrana Celular , Portadores de Fármacos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas , Animales , Línea Celular Tumoral , Humanos , RatonesRESUMEN
Head and neck cancer (HNC), which includes lip and oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx malignancies, is one of the most common cancers worldwide. Due to the interaction of tumor cells with immune cells in the tumor microenvironment, immunotherapy of HNCs, along with traditional treatments such as chemotherapy, radiotherapy, and surgery, has attracted much attention. Four main immunotherapy strategies in HNCs have been developed, including oncolytic viruses, monoclonal antibodies, chimeric antigen receptor T cells (CAR-T cells), and therapeutic vaccines. Oncorine (H101), an approved oncolytic adenovirus in China, is the pioneer of immunotherapy for the treatment of HNCs. Pembrolizumab and nivolumab are mAbs against PD-L1 that have been approved for recurrent and metastatic HNC patients. To date, several clinical trials using immunotherapy agents and their combination are under investigation. In this review, we summarize current the interaction of tumor cells with immune cells in the tumor microenvironment of HNCs, the main strategies that have been applied for immunotherapy of HNCs, obstacles that hinder the success of immunotherapies in patients with HNCs, as well as solutions for overcoming the challenges to enhance the response of HNCs to immunotherapies.
RESUMEN
Oncolytic virus (OV) immunotherapy is characterized by viruses which specifically target cancer cells and cause their cytolysis. They provide a unique and promising new tool for the eradication of cancer as they interact with and affect the tumor microenvironment (TME), vasculature, and immune system. Advancements of genetic engineering have allowed for these viruses to be armed in such a way to have enhanced targeting, strong immunomodulation properties, and an ability to modify the TME. However, there are still major limitations in their use, mostly due to difficulties in delivering the viral particles to the tumors and in ensuring that the immunomodulatory properties are able to stimulate the host immune response to mount a complete response. Using novel delivery systems and using OVs as a complementary therapy in a combinatorial treatment have shown some significant successes. In this review, we discuss the major issues and difficulties in using OVs as anti-tumor agents and some of the strategies put in place so far to overcome these limitations. KEY POINTS: ⢠Oncolytic viruses (OVs) infect cancer cells and cause their cytolysis. ⢠The major limitations in using OVs as anti-tumor therapy were discussed. ⢠The potential strategies to overcome these limitations were summarized.
Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Inmunomodulación , Inmunoterapia , Neoplasias/terapia , Virus Oncolíticos/genética , Microambiente TumoralRESUMEN
Oncolytic virotherapy is a promising antitumor strategy which utilizes the lytic nature of viral replication to kill cancer cells. Oncolytic viruses (OVs) can induce cancer cell death and trigger immune responses to metastatic cancer in vivo. Reverse genetic systems have aided the insertion of anticancer genes into various OVs to augment their oncolytic capacity. Furthermore, OVs target and destroy the population of tumor-initiating cancer stem cells. These cancer stem cells are associated with metastasis and development of resistance to conventional anticancer approaches. Targeting cancer stem cells is essential since killing only differentiated tumor cells may lead to enrichment of cancer stem cells and thus indicate a poor prognosis. In this review, we summarize the oncolytic activity of various classes of OVs towards different types of cancer stem cells and also discuss the synergistic activity achieved by the combination of OVs with traditional therapies on chemo- and radiotherapy-resistant cancer stem cells.
Asunto(s)
Neoplasias , Células Madre Neoplásicas/inmunología , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Antineoplásicos , Línea Celular Tumoral , Humanos , Ratones , Neoplasias/inmunología , Neoplasias/terapiaRESUMEN
Cancer is a complex multifactorial disease for which many promising therapeutic strategies such as immunotherapy are emerging. Malignant cells frequently express aberrant cell surface carbohydrates, which differentiate them from normal "healthy" cells. This characteristic presents a window for the development of synthetic carbohydrate antigen-based cancer vaccines which can be recognized by the immune system and can bring about T cell-dependent immune responses. Antibodies generated against the carbohydrate antigens partake in the inactivation of carbohydrate-decorated cancer cells, by slowing down tumor cell growth and inducing cancer cell apoptosis. Novel synthetic strategies for carbohydrate antigens have led to several synthetic cancer vaccine candidates. In the present review, we describe the latest progress in carbohydrate-based cancer vaccines and their clinical evaluation in various cancers.
Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/inmunología , Vacunas contra el Cáncer/inmunología , Carbohidratos/inmunología , Descubrimiento de Drogas/tendencias , Neoplasias/terapia , Vacunas contra el Cáncer/administración & dosificación , Carbohidratos/administración & dosificación , Humanos , Inmunidad Celular , Inmunidad HumoralRESUMEN
Neural stem cell therapy, as a new therapeutic method for neural diseases, has aroused a wide concern for over 20 years since neural stem cells were first found in 1992. Ischemic stroke is highly concerned because of its high incidence, mortality and disability rates. Because the brain has a limited ability to repair itself, to improve neural function and promote neural regeneration may help to prevent occurrence and development of neurological diseases. It is noteworthy that some stroke patients showed an ability to repair brain several months after the stroke happened, suggesting an existence of endogenous nerve repair in these patients. The research advances in functions of endogenous neural stem cells in neural regeneration and the related regulators after ischemic stroke are summarized in this review to provide new views of the mechanism of neural functional recovery after ischemic stroke.
Asunto(s)
Isquemia Encefálica/terapia , Regeneración Nerviosa , Células-Madre Neurales/citología , Accidente Cerebrovascular/terapia , HumanosRESUMEN
The purpose of this study was to investigate the correlation of T-cadherin expression with clinicopathological features and prognosis in patients with axillary lymph node-positive breast cancer. Based on the immunohistochemistry results, all 142 patients with operable axillary lymph node-positive breast cancer were divided into the T-cadherin-negative and T-cadherin-positive groups. Clinical data including the association of T-cadherin expression with clinicopathological features and prognosis were analyzed using the Chi square test and Fisher's exact test using SPSS 13.0 software. The impact of T-cadherin expression on the 5-year disease-free survival (DFS) and the 5-year overall survival (OS) of these patients was measured using the log-rank test. DFS and OS were analyzed using both Kaplan-Meier function and Cox regression analyses. Compared with the T-cadherin-positive group (55.07, 28.99, and 13.4 %, respectively; P = 0.030, P = 0.0132, and P = 0.009), tumor size >2 cm, lymph-vascular invasion, and pathological stage III disease were seen more frequently in the T-cadherin-negative group (72.60, 49.32, and 31.51 %, respectively). Both 5-year DFS and 5-year OS were poorer in the T-cadherin-negative group than in the T-cadherin-positive group (log-rank test = 9.295, P = 0.002; log-rank test = 5.718, P = 0.017). On multivariate analysis, T-cadherin-negative expression remained an independent prognostic factor for DFS (P = 0.002) but not for OS (P = 0.067). Our results suggested that negative T-cadherin expression has a worse prognosis in patients with axillary lymph node-positive breast cancer.
Asunto(s)
Axila , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , Ganglios Linfáticos/patología , Adulto , Anciano , Biomarcadores de Tumor , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/terapia , Femenino , Estudios de Seguimiento , Humanos , Inmunohistoquímica , Metástasis Linfática , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico , Carga TumoralRESUMEN
The objective of the present study was to assess the levels of circulating cytokines in patients with diffuse large B-cell lymphoma (DLBCL), and to examine the associations between the cytokine levels, clinicopathological manifestations and patient prognosis. The study enrolled 49 patients with DLBCL, 11 patients with chronic lymphocytic leukemia/small lymphocytic lymphoma and 67 healthy controls from Zhejiang Provincial People's Hospital (Hangzhou, China) between January 2017 and January 2020. The serum levels of interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were measured using flow cytometry. The IL-6, IL-10 and IFN-γ levels were significantly raised in patients with DLBCL compared with those in the healthy controls (P<0.05). The levels of IL-10 were significantly higher in patients with raised levels of circulating lactate dehydrogenase (P<0.05), while increases in both IL-6 and IL-10 were associated with raised C-reactive protein (CRP) levels, with IL-6 levels positively associated with those of serum CRP (P<0.01; r=0.66). Additionally, International Prognostic Index (IPI) risk stratification of patients with DLBCL was strongly associated with circulating IL-6 and IL-10 levels. Raised IL-6, IL-10 and TNF-α levels were linked with worse short-term treatment efficacies (P<0.05). Moreover, the accuracy of the model predicting short-term treatment response in patients with DLBCL, obtained using the support vector machine algorithm, was 81.63%. It was also found that raised serum IL-6 and IL-10 levels, together with reduced levels of IL-17, were associated with survival of <1 year in patients with DLBCL (P<0.05), although no significant link was found between cytokine levels and long-term overall survival. In conclusion, the serum levels of IL-6, IL-10, IL-17, TNF-α and IFN-γ can potentially serve as biological indicators of DLBCL tumor immune status, and combined application with the IPI score can be a robust prognostic indicator in patients with DLBCL.
RESUMEN
BACKGROUND: The redundant extracellular matrix (ECM) within tumor microenvironment (TME) such as hyaluronic acid (HA) often impairs intratumoral dissemination of antitumor drugs. Oncolytic viruses (OVs) are being studied extensively for cancer therapy either alone or in conjunction with chemotherapy and immunotherapy. Here, we designed a novel recombinant vaccinia virus encoding a soluble version of hyaluronidase Hyal1 (OVV-Hyal1) to degrade the HA and investigated its antitumor effects in combination with chemo drugs, polypeptide, immune cells, and antibodies. METHODS: We constructed a recombinant oncolytic vaccinia virus encoding the hyaluronidase, and investigated its function in remodeling the ECM of the TME, the antitumor efficacy both in vitro and in several murine solid tumors either alone, or in combination with chemo drugs including doxorubicin and gemcitabine, with polypeptide liraglutide, with immune therapeutics such as PD-L1/PD-1 blockade, CD47 antibody, and with CAR-T cells. RESULTS: Compared with control OVV, intratumoral injection of OVV-Hyal1 showed superior antitumor efficacies in a series of mouse subcutaneous tumor models. Moreover, HA degradation by OVV-Hyal1 resulted in increased intratumoral dissemination of chemo drugs, infiltration of T cells, NK cells, macrophages, and activation of CD8+ T cells. When OVV-Hyal1 was combined with some antitumor therapeutics, for example, doxorubicin, gemcitabine, liraglutide, anti-PD-1, anti-CD47 blockade, or CAR-T cells, more profound therapeutic outcomes were obtained. CONCLUSIONS: OVV-Hyal1 effectively degrades HA to reshape the TME, therefore overcoming some major hurdles in current cancer therapy, such as limited OVs spread, unfavored dissemination of chemo drugs, polypeptides, antibodies, and insufficient infiltration of effector immune cells. OVV-Hyal1 holds the promise to improve the antitumor outcomes of current cancer therapeutics.
Asunto(s)
Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Ratones , Animales , Virus Oncolíticos/genética , Virus Vaccinia/genética , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/farmacología , Viroterapia Oncolítica/métodos , Gemcitabina , Linfocitos T CD8-positivos , Liraglutida/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Inmunoterapia/métodos , Modelos Animales de Enfermedad , Péptidos/farmacología , Matriz Extracelular/patología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Microambiente TumoralRESUMEN
Oncolytic adenoviruses (oADV) are promising cancer treatment agents. However, in vivo hepatic sequestration and the host immunologic response against the agents limit the therapeutic potential of oADVs. In this study, we present a combined method with a rational design for improving oADV infection efficiency, immunogenicity, and treatment efficacy by self-biomineralization. We integrated the biomimetic nucleopeptide W6p into the capsid of oADV using reverse genetics, allowing calcium phosphate mineralization to be biologically induced on the surface of oADV under physiologic conditions, resulting in a mineral exterior. This self-biomineralized, modified oADV (oADV-W6-CaP) enhanced infection efficiency and therapeutic efficacy in coxsackievirus and adenovirus receptor (CAR)-negative cancer cells wherein protecting them against neutralization by preexisting neutralizing antibodies. In subcutaneous mouse tumor models, systemic injection of oADV-W6-CaP demonstrated improved antitumor effectiveness, which was associated with increased T-cell infiltration and CD8+ T-cell activation. In addition, the anticancer immune response elicited by oADV-W6-CaP was dependent on CD8+ T cells, which mediated long-term immunologic memory and systemic antitumor immunity against the same tumor. Finally, the addition of PD1 or CD47 inhibition boosted the anticancer effects of oADV-W6-CaP and increased the rate of complete tumor clearance in tumor-bearing animals. The self-biomineralized oADV shifted the suppressive tumor microenvironment from a "cold" to "hot" state and synergized with immune checkpoint blockade to exert outstanding tumoricidal effects, demonstrating promising potential for cancer immunotherapy.
Asunto(s)
Adenoviridae , Inhibidores de Puntos de Control Inmunológico , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Ratones , Virus Oncolíticos/inmunología , Virus Oncolíticos/genética , Viroterapia Oncolítica/métodos , Humanos , Adenoviridae/genética , Adenoviridae/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/terapia , Neoplasias/inmunología , Femenino , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Terapia Combinada , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Endogámicos C57BLRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is currently difficult to treat, even when therapies are combined with immune checkpoint blockade (ICB). A novel strategy for immunotherapy would be to maximize the therapeutic potential of oncolytic viruses (OVs), which have been proven to engage the regulation of tumor microenvironment (TME) and cause-specific T-cell responses. To boost tumor sensitivity to ICB therapy, this study aimed to investigate how glutathione peroxide 4 (GPX4)-loaded OVs affect CD8+ T cells and repair the immunosuppressive environment. Here, we successfully constructed a novel recombinant oncolytic vaccinia virus (OVV) encoding the mouse GPX4 gene. We found the OVV-GPX4 effectively replicated in tumor cells and prompted the expression of GPX4 in T cells. Our research indicated that OVV-GPX4 could reshape the TME, rectify the depletion of CD8+T cells, and enhance the antitumor effects of ICB therapy.
Asunto(s)
Carcinoma Ductal Pancreático , Viroterapia Oncolítica , Virus Oncolíticos , Neoplasias Pancreáticas , Animales , Ratones , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Linfocitos T CD8-positivos , Virus Oncolíticos/genética , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Virus Vaccinia/genéticaRESUMEN
Oncolytic viral therapy (OVT) is a novel anti-tumor immunotherapy approach, specifically replicating within tumor cells. Currently, oncolytic viruses are mainly administered by intratumoral injection. However, achieving good results for distant metastatic tumors is challenging. In this study, a multifunctional oncolytic adenovirus, OA@CuMnCs, was developed using bimetallic ions copper and manganese. These metal cations form a biomineralized coating on the virus's surface, reducing immune clearance. It is known that viruses upregulate the expression of PD-L1. Copper ions in OA@CuMnCs can decrease the PD-L1 expression of tumor cells, thereby promoting immune cell-related factor release. This process involves antigen presentation and the combination of immature dendritic cells, transforming them into mature dendritic cells. It changes "cold" tumors into "hot" tumors, further inducing immunogenic cell death. While oncolytic virus replication requires oxygen, manganese ions in OA@CuMnCs can react with endogenous hydrogen peroxide. This reaction produces oxygen, enhancing the virus's replication ability and the tumor lysis effect. Thus, this multifunctionally coated OA@CuMnCs demonstrates potent amplification in immunotherapy efficacy, and shows great potential for further clinical OVT. STATEMENT OF SIGNIFICANCE: Oncolytic virus therapy (OVs) is a new anti-tumor immunotherapy method that can specifically replicate in tumor cells. Although the oncolytic virus can achieve a therapeutic effect on some non-metastatic tumors through direct intratumoral injection, there are still three major defects in the treatment of metastatic tumors: immune response, hypoxia effect, and administration route. Various studies have shown that the immune response in vivo can be overcome by modifying or wrapping the surface protein of the oncolytic virus. In this paper, a multifunctional coating of copper and manganese was prepared by combining the advantages of copper and manganese ions. The coating has a simple preparation method and mild conditions, and can effectively enhance tumor immunotherapy.
Asunto(s)
Adenoviridae , Neoplasias Colorrectales , Cobre , Inmunoterapia , Manganeso , Viroterapia Oncolítica , Virus Oncolíticos , Cobre/química , Cobre/farmacología , Manganeso/química , Manganeso/farmacología , Inmunoterapia/métodos , Animales , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Viroterapia Oncolítica/métodos , Humanos , Línea Celular Tumoral , Ratones , Ratones Endogámicos BALB C , FemeninoRESUMEN
Colorectal cancer (CRC) is a prevalent malignancy with insidious onset and diagnostic challenges, highlighting the need for therapeutic approaches to enhance theranostic outcomes. In this study, we elucidated the unique temperature-resistant properties of the oncolytic vaccinia virus (OVV), which can synergistically target tumors under photothermal conditions. To capitalize on this characteristic, we harnessed the potential of the OVV by surface-loading it with indocyanine green (ICG) and encapsulating it within a platelet membrane (PLTM), resulting in the creation of PLTM-ICG-OVV (PIOVV). This complex seamlessly integrates virotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT). The morphology, size, dispersion stability, optical properties, and cellular uptake of PIOVV were evaluated using transmission electron microscopy (TEM). In vitro and in vivo experiments revealed specificity of PIOVV for cancer cells; it effectively induced apoptosis and suppressed CT26 cell proliferation. In mouse models, PIOVV exhibits enhanced fluorescence at tumor sites, accompanied by prolonged blood circulation. Under 808 nm laser irradiation, PIOVV significantly inhibited tumor growth. This strategy holds the potential for advancing phototherapy, oncolytic virology, drug delivery, and tumor-specific targeting, particularly in the context of CRC theranostics.
Asunto(s)
Neoplasias Colorrectales , Verde de Indocianina , Viroterapia Oncolítica , Virus Oncolíticos , Fotoquimioterapia , Virus Vaccinia , Verde de Indocianina/química , Verde de Indocianina/farmacología , Animales , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Ratones , Virus Vaccinia/fisiología , Virus Oncolíticos/fisiología , Humanos , Viroterapia Oncolítica/métodos , Plaquetas , Línea Celular Tumoral , Ratones Endogámicos BALB C , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Imagen Óptica , Terapia Fototérmica , Terapia Combinada , Tamaño de la Partícula , Propiedades de Superficie , Rayos Infrarrojos , Ratones DesnudosRESUMEN
Oncolytic virus therapy is currently regarded as a promising approach in cancer immunotherapy. It has greater therapeutic advantages for colorectal cancer that is prone to distant metastasis. However, the therapeutic efficacy and clinical application of viral agents alone for colorectal cancer remain suboptimal. In this study, an engineered oncolytic vaccinia virus (OVV-Luc) that expresses the firefly luciferase gene is developed and loaded Chlorin e6 (Ce6) onto the virus surface through covalent coupling, resulting in OVV-Luc@Ce6 (OV@C). The OV@C infiltrates tumor tissue and induces endogenous luminescence through substrate catalysis, resulting in the production of reactive oxygen species. This unique system eliminates the need for an external light source, making it suitable for photodynamic therapy (PDT) in deep tissues. Moreover, this synergistic effect between PDT and viral immunotherapy enhances dendritic cell maturation, macrophage polarization, and reversal of the immunosuppressive microenvironment. This synergistic effect has the potential to convert a "cold" into a "hot" tumor, it offers valuable insights for clinical translation and application.
Asunto(s)
Neoplasias Colorrectales , Inmunoterapia , Viroterapia Oncolítica , Virus Oncolíticos , Fotoquimioterapia , Virus Vaccinia , Virus Vaccinia/genética , Virus Vaccinia/fisiología , Fotoquimioterapia/métodos , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Animales , Viroterapia Oncolítica/métodos , Virus Oncolíticos/genética , Virus Oncolíticos/fisiología , Humanos , Inmunoterapia/métodos , Ratones , Clorofilidas , Línea Celular Tumoral , Porfirinas/química , Porfirinas/farmacología , Ratones Endogámicos BALB C , Terapia Combinada/métodos , Especies Reactivas de Oxígeno/metabolismo , FemeninoRESUMEN
AIM: The tumor suppressor in lung cancer-1 (TSLC1) is a candidate tumor suppressor of lung cancer, and frequently inactivated in primary non-small cell lung cancer (NSCLC). In this study, we investigated the effects of TSLC1 mediated by a dual-regulated oncolytic adenovirus on lung cancer, and the mechanisms underlying the antitumor actions. METHODS: The recombinant virus Ad·sp-E1A(Δ24)-TSLC1 was constructed by inserting the TSLC1 gene into the dual-regulated Ad·sp-E1A(Δ24) vector, which contained the survivin promoter and a 24 bp deletion within E1A. The antitumor effects of Ad·sp-E1A(Δ24)-TSLC1 were evaluated in NCI-H460, A549, and H1299 lung cancer cell lines and the normal fibroblast cell line MRC-5, as well as in A549 xenograft model in nude mice. Cell viability was assessed using MTT assay. The expression of TSLC1 and activation of the caspase signaling pathway were detected by Western blot analyses. The tumor tissues from the xenograft models were examined using H&E staining, IHC, TUNEL, and TEM analyses. RESULTS: Infection of A549 lung cancer cells with Ad·sp-E1A(Δ24)-TSLC1 induced high level expression of TSLC1. Furthermore, the Ad·sp-E1A(Δ24)-TSLC1 virus dose-dependently suppressed the viability of NCI-H460, A549, and H1299 lung cancer cells, and did not affect MRC-5 normal fibroblast cells. Infection of NCI-H460, A549, and H1299 lung cancer cells with Ad·sp-E1A(Δ24)-TSLC1 induced apoptosis, and increased activation of caspase-8, caspase-3 and PARP. In A549 xenograft model in nude mice, intratumoral injection of Ad·sp-E1A(Δ24)-TSLC1 significantly suppressed the tumor volume, and increased the survival rate (from less than 15% to 87.5% at d 60). Histological studies showed that injection of Ad·sp-E1A(Δ24)-TSLC1 caused tumor cell apoptosis and virus particle propagation in tumor tissues. CONCLUSION: The oncolytic adenovirus Ad·sp-E1A(Δ24)-TSLC1 exhibits specific antitumor effects, and is a promising agent for the treatment of lung cancer.
Asunto(s)
Adenoviridae/fisiología , Moléculas de Adhesión Celular/genética , Inmunoglobulinas/genética , Neoplasias Pulmonares/terapia , Virus Oncolíticos/fisiología , Proteínas Supresoras de Tumor/genética , Animales , Apoptosis/fisiología , Molécula 1 de Adhesión Celular , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Femenino , Fibroblastos/metabolismo , Fibroblastos/virología , Terapia Genética/métodos , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Inmunoglobulinas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/virología , Ratones , Ratones Endogámicos BALB C , Viroterapia Oncolítica/métodos , Distribución Aleatoria , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Supresoras de Tumor/metabolismoRESUMEN
OBJECTIVE: This investigation seeks to explore the mechanism of quercetin in oral cancer by incorporating network pharmacology analysis and molecular docking. METHODS: First, we use the network pharmacology analysis to discover possible core targets for quercetin and oral cancer. We subsequently utilized the docking of molecules techniques to calculate the affinities of critical targets and quercetin for verification. RESULTS: TCMSP and the Swiss Target Prediction database found 190 quercetin action targets, while GeneCards, OMIM, PharmGkb, and the Therapeutic Target Database found 8971 oral cancer-related targets. Venny 2.1.0 online software conducted an intersection analysis of quercetin-related target information with information about oral cancer, and 172 putative quercetin-anti-oral cancer targets were examined. Six prospective core targets for quercetin treatment of oral cancer were identified from the PPI network topology analysis of 172 putative therapeutic targets. These targets include AKT1, PIK3R1, MYC, HIF1A, SRC, and HSP90AA1. GO enrichment function analysis showed that 2372 biological processes, 98 cell components, and 201 molecular functions were involved. Through enrichment analysis of the KEGG pathway, 172 signal pathways were obtained. A few examples are PI3K-AKT, HIF-1, IL-17, and other signaling pathways. The molecular docking scores of quercetin and the primary therapeutic targets AKT1, HIF1A, HSP90AA1, MYC, PIK3R1, and SRC are all less than -0.7 points, demonstrating good compatibility between the medicine and small molecules and suggesting that quercetin may affect oral cancer through the primary target. CONCLUSION: This study explores quercetin's mechanism and possible targets for oral cancer treatment, offering novel approaches. Quercetin may be a multitarget medication against oral cancer in the future.
Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias de la Boca , Humanos , Simulación del Acoplamiento Molecular , Quercetina/farmacología , Fosfatidilinositol 3-Quinasas , Estudios Prospectivos , Neoplasias de la Boca/tratamiento farmacológicoRESUMEN
We report a general scheme to systematically construct two classes of structural families of superhard sp(3) carbon allotropes of cold-compressed graphite through the topological analysis of odd 5+7 or even 4+8 membered carbon rings stemmed from the stacking of zigzag and armchair chains. Our results show that the previously proposed M, bct-C(4), W and Z allotropes belong to our currently proposed families and that depending on the topological arrangement of the native carbon rings numerous other members are found that can help us understand the structural phase transformation of cold-compressed graphite and carbon nanotubes (CNTs). In particular, we predict the existence of two simple allotropes, R and P carbon, which match well the experimental x-ray diffraction patterns of cold-compressed graphite and CNTs, respectively, display a transparent wide-gap insulator ground state and possess a large Vickers hardness comparable to diamond.