Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 358
Filtrar
1.
Cell ; 187(12): 3039-3055.e14, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848677

RESUMEN

In the prevailing model, Lgr5+ cells are the only intestinal stem cells (ISCs) that sustain homeostatic epithelial regeneration by upward migration of progeny through elusive upper crypt transit-amplifying (TA) intermediates. Here, we identify a proliferative upper crypt population marked by Fgfbp1, in the location of putative TA cells, that is transcriptionally distinct from Lgr5+ cells. Using a kinetic reporter for time-resolved fate mapping and Fgfbp1-CreERT2 lineage tracing, we establish that Fgfbp1+ cells are multi-potent and give rise to Lgr5+ cells, consistent with their ISC function. Fgfbp1+ cells also sustain epithelial regeneration following Lgr5+ cell depletion. We demonstrate that FGFBP1, produced by the upper crypt cells, is an essential factor for crypt proliferation and epithelial homeostasis. Our findings support a model in which tissue regeneration originates from upper crypt Fgfbp1+ cells that generate progeny propagating bi-directionally along the crypt-villus axis and serve as a source of Lgr5+ cells in the crypt base.


Asunto(s)
Mucosa Intestinal , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Animales , Ratones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citología , Células Madre/metabolismo , Células Madre/citología , Linaje de la Célula , Regeneración , Proliferación Celular , Células Epiteliales/metabolismo , Células Epiteliales/citología , Ratones Endogámicos C57BL , Homeostasis
2.
Cell ; 187(12): 3056-3071.e17, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848678

RESUMEN

The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.


Asunto(s)
Homeostasis , Mucosa Intestinal , Receptores Acoplados a Proteínas G , Regeneración , Células Madre , Animales , Células Madre/metabolismo , Células Madre/citología , Ratones , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Intestinos/citología , Diferenciación Celular , Ratones Endogámicos C57BL , Células Epiteliales/metabolismo , Análisis de la Célula Individual , Masculino
3.
Cell ; 186(8): 1689-1707, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37059069

RESUMEN

The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.


Asunto(s)
Neoplasias , Neurociencias , Humanos , Sistema Inmunológico , Neoplasias/patología , Neuronas/patología , Microambiente Tumoral
4.
Cell ; 181(2): 219-222, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302564

RESUMEN

Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.


Asunto(s)
Neoplasias/metabolismo , Sistema Nervioso/metabolismo , Humanos , Neurociencias
5.
Cell ; 174(2): 251-253, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30007413

RESUMEN

The intestinal response to helminth infection is mediated by a recently established type 2 immune circuit that consists of intestinal tuft cells and type 2 innate lymphoid cells (ILC2s). Schneider et al. have discovered that tuft cells sense succinate fermented by Tritrichomonas via GPR91 to drive the IL-25-ILC2-IL-13-dependent immune circuit and intestinal remodeling.


Asunto(s)
Inmunidad Innata/inmunología , Intestino Delgado/inmunología , Homeostasis/inmunología , Interleucina-13/inmunología , Intestinos , Linfocitos/inmunología
6.
EMBO J ; 41(13): e111696, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35767358

RESUMEN

R-spondins are critical regulators of gastric epithelial cells, with Lgr5 receptor historically considered as their main signaling transducer. Recent work by Wizenty et al (2022) now revealed distinct roles for Lgr4 and Lgr5 in directing gland reconstitution following H. pylori infection, shedding new light on the complexities of Rspo signaling during gastric regeneration and raising questions about antral stem cell hierarchy.


Asunto(s)
Receptores Acoplados a Proteínas G , Trombospondinas , Transducción de Señal , Células Madre , Estómago , Trombospondinas/genética , Vía de Señalización Wnt
7.
Gastroenterology ; 167(3): 505-521.e19, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38583723

RESUMEN

BACKGROUND & AIMS: Gastric cancer is often accompanied by a loss of mucin 6 (MUC6), but its pathogenic role in gastric carcinogenesis remains unclear. METHODS: Muc6 knockout (Muc6-/-) mice and Muc6-dsRED mice were newly generated. Tff1Cre, Golph3-/-, R26-Golgi-mCherry, Hes1flox/flox, Cosmcflox/flox, and A4gnt-/- mice were also used. Histology, DNA and RNA, proteins, and sugar chains were analyzed by whole-exon DNA sequence, RNA sequence, immunohistochemistry, lectin-binding assays, and liquid chromatography-mass spectrometry analysis. Gastric organoids and cell lines were used for in vitro assays and xenograft experiments. RESULTS: Deletion of Muc6 in mice spontaneously causes pan-gastritis and invasive gastric cancers. Muc6-deficient tumor growth was dependent on mitogen-activated protein kinase activation, mediated by Golgi stress-induced up-regulation of Golgi phosphoprotein 3. Glycomic profiling revealed aberrant expression of mannose-rich N-linked glycans in gastric tumors, detected with banana lectin in association with lack of MUC6 expression. We identified a precursor of clusterin as a binding partner of mannose glycans. Mitogen-activated protein kinase activation, Golgi stress responses, and aberrant mannose expression are found in separate Cosmc- and A4gnt-deficient mouse models that lack normal O-glycosylation. Banana lectin-drug conjugates proved an effective treatment for mannose-rich murine and human gastric cancer. CONCLUSIONS: We propose that Golgi stress responses and aberrant glycans are important drivers of and promising new therapeutic targets for gastric cancer.


Asunto(s)
Ratones Noqueados , Mucina 6 , Neoplasias Gástricas , Animales , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Glicosilación , Humanos , Mucina 6/metabolismo , Mucina 6/genética , Ratones , Línea Celular Tumoral , Carcinogénesis/metabolismo , Carcinogénesis/genética , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Factor Trefoil-1/metabolismo , Factor Trefoil-1/genética , Organoides/metabolismo , Aparato de Golgi/metabolismo , Mucinas Gástricas/metabolismo , Modelos Animales de Enfermedad
8.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34910127

RESUMEN

Although Wnt signaling is clearly important for the intestinal epithelial homeostasis, the relevance of various sources of Wnt ligands themselves remains incompletely understood. Blocking the release of Wnt in distinct stromal cell types suggests obligatory functions of several stromal cell sources and yields different observations. The physiological contribution of epithelial Wnt to tissue homeostasis remains unclear. We show here that blocking epithelial Wnts affects colonic Reg4+ epithelial cell differentiation and impairs colonic epithelial regeneration after injury in mice. Single-cell RNA analysis of intestinal stroma showed that the majority of Wnt-producing cells were contained in transgelin (Tagln+) and smooth muscle actin α2 (Acta2+) expressing populations. We genetically attenuated Wnt production from these stromal cells using Tagln-Cre and Acta2-CreER drivers, and found that blockage of Wnt release from either epithelium or Tagln+ and Acta2+ stromal cells impaired colonic epithelial healing after chemical-induced injury. Aggregated blockage of Wnt release from both epithelium and Tagln+ or Acta2+ stromal cells drastically diminished epithelial repair, increasing morbidity and mortality. These results from two uncharacterized stromal populations suggested that colonic recovery from colitis-like injury depends on multiple Wnt-producing sources.


Asunto(s)
Actinas/metabolismo , Colitis Ulcerosa/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Proteína Wnt3A/metabolismo , Cicatrización de Heridas , Actinas/genética , Animales , Células Cultivadas , Colon/citología , Colon/metabolismo , Colon/fisiología , Mucosa Intestinal/citología , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas Musculares/genética , Proteínas Asociadas a Pancreatitis/genética , Proteínas Asociadas a Pancreatitis/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/metabolismo , Proteína Wnt3A/genética
9.
Gastroenterology ; 164(7): 1119-1136.e12, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740200

RESUMEN

BACKGROUND & AIMS: Transformation of stem/progenitor cells has been associated with tumorigenesis in multiple tissues, but stem cells in the stomach have been hard to localize. We therefore aimed to use a combination of several markers to better target oncogenes to gastric stem cells and understand their behavior in the initial stages of gastric tumorigenesis. METHODS: Mouse models of gastric metaplasia and cancer by targeting stem/progenitor cells were generated and analyzed with techniques including reanalysis of single-cell RNA sequencing and immunostaining. Gastric cancer cell organoids were genetically manipulated with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) for functional studies. Cell division was determined by bromodeoxyuridine-chasing assay and the assessment of the orientation of the mitotic spindles. Gastric tissues from patients were examined by histopathology and immunostaining. RESULTS: Oncogenic insults lead to expansion of SOX9+ progenitor cells in the mouse stomach. Genetic lineage tracing and organoid culture studies show that SOX9+ gastric epithelial cells overlap with SOX2+ progenitors and include stem cells that can self-renew and differentiate to generate all gastric epithelial cells. Moreover, oncogenic targeting of SOX9+SOX2+ cells leads to invasive gastric cancer in our novel mouse model (Sox2-CreERT;Sox9-loxp(66)-rtTA-T2A-Flpo-IRES-loxp(71);Kras(Frt-STOP-Frt-G12D);P53R172H), which combines Cre-loxp and Flippase-Frt genetic recombination systems. Sox9 deletion impedes the expansion of gastric progenitor cells and blocks neoplasia after Kras activation. Although Sox9 is not required for maintaining tissue homeostasis where asymmetric division predominates, loss of Sox9 in the setting of Kras activation leads to reduced symmetric cell division and effectively attenuates the Kras-dependent expansion of stem/progenitor cells. Similarly, Sox9 deletion in gastric cancer organoids reduces symmetric cell division, organoid number, and organoid size. In patients with gastric cancer, high levels of SOX9 are associated with recurrence and poor prognosis. CONCLUSION: SOX9 marks gastric stem cells and modulates biased symmetric cell division, which appears to be required for the malignant transformation of gastric stem cells.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Neoplasias Gástricas , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Gástricas/patología , Proliferación Celular , Transformación Celular Neoplásica/patología , Carcinogénesis/patología , División Celular , Células Madre/metabolismo
10.
Gastroenterology ; 164(4): 593-609.e13, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36634827

RESUMEN

BACKGROUND & AIMS: Colorectal cancer is a leading cause of cancer death, and a major risk factor is chronic inflammation. Despite the link between colitis and cancer, the mechanism by which inflammation leads to colorectal cancer is not well understood. METHODS: To investigate whether different forms of inflammation pose the same risk of cancer, we compared several murine models of colitis (dextran sodium sulfate [DSS], 2,4,6-trinitrobenzene sulfonic acid, 4-ethoxylmethylene-2-phenyloxazol-5-one, Citrobacter rodentium, Fusobacterium nucleatum, and doxorubicin) with respect to their ability to lead to colonic tumorigenesis. We attempted to correlate the severity of colitis and inflammatory profile with the risk of tumorigenesis in both azoxymethane-dependent and Dclk1/APCfl/fl murine models of colitis-associated cancer. RESULTS: DSS colitis reproducibly led to colonic tumors in both mouse models of colitis-associated cancer. In contrast, all other forms of colitis did not lead to cancer. When compared with the colitis not associated with tumorigenesis, DSS colitis was characterized by significantly increased CD11b+F4/80+Ly6Chigh macrophages and CD11b+Ly6G+ neutrophils. Interestingly, depletion of the CD11b+F4/80+Ly6Chigh macrophages inhibited tumorigenesis, whereas depletion of CD11b+Ly6G+ neutrophils had no effect on tumorigenesis. Furthermore, the macrophage-derived cytokines interleukin-1ß, tumor necrosis factor-α, and interleukin-6 were significantly increased in DSS colitis and promoted stemness of Dclk1+ tuft cells that serve as the cellular origin of cancer. CONCLUSIONS: We have identified CD11b+F4/80+Ly6Chigh macrophages as key mediators of cancer initiation in colitis-associated cancer. Development of new therapies that target these cells may provide an effective preventative strategy for colitis-associated cancer.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Animales , Ratones , Azoximetano , Carcinogénesis/metabolismo , Plasticidad de la Célula , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/metabolismo , Neoplasias Asociadas a Colitis/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL
11.
Gut ; 72(3): 421-432, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35750470

RESUMEN

OBJECTIVE: Oesophageal adenocarcinoma (EAC) arises in the setting of Barrett's oesophagus, an intestinal metaplastic precursor lesion that can develop in patients with chronic GERD. Here, we investigated the role of acidic bile salts, the mimicry of reflux, in activation of NOTCH signaling in EAC. DESIGN: This study used public databases, EAC cell line models, L2-IL1ß transgenic mouse model and human EAC tissue samples to identify mechanisms of NOTCH activation under reflux conditions. RESULTS: Analysis of public databases demonstrated significant upregulation of NOTCH signaling components in EAC. In vitro studies demonstrated nuclear accumulation of active NOTCH1 cleaved fragment (NOTCH intracellular domain) and upregulation of NOTCH targets in EAC cells in response to reflux conditions. Additional investigations identified DLL1 as the predominant ligand contributing to NOTCH1 activation under reflux conditions. We discovered a novel crosstalk between APE1 redox function, reflux-induced inflammation and DLL1 upregulation where NF-κB can directly bind to and induce the expression of DLL1. The APE1 redox function was crucial for activation of the APE1-NF-κB-NOTCH axis and promoting cancer cell stem-like properties in response to reflux conditions. Overexpression of APE1 and DLL1 was detected in gastro-oesophageal junctions of the L2-IL1ß transgenic mouse model and human EAC tissue microarrays. DLL1 high levels were associated with poor overall survival in patients with EAC. CONCLUSION: These findings underscore a unique mechanism that links redox balance, inflammation and embryonic development (NOTCH) into a common pro-tumorigenic pathway that is intrinsic to EAC cells.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Neoplasias Esofágicas , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Neoplasias Esofágicas/patología , Adenocarcinoma/patología , Esófago de Barrett/metabolismo , Ratones Transgénicos , Oxidación-Reducción , Inflamación
12.
Gut ; 73(1): 47-62, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37734913

RESUMEN

OBJECTIVE: Chronic gastro-oesophageal reflux disease, where acidic bile salts (ABS) reflux into the oesophagus, is the leading risk factor for oesophageal adenocarcinoma (EAC). We investigated the role of ABS in promoting epithelial-mesenchymal transition (EMT) in EAC. DESIGN: RNA sequencing data and public databases were analysed for the EMT pathway enrichment and patients' relapse-free survival. Cell models, pL2-IL1ß transgenic mice, deidentified EAC patients' derived xenografts (PDXs) and tissues were used to investigate EMT in EAC. RESULTS: Analysis of public databases and RNA-sequencing data demonstrated significant enrichment and activation of EMT signalling in EAC. ABS induced multiple characteristics of the EMT process, such as downregulation of E-cadherin, upregulation of vimentin and activation of ß-catenin signalling and EMT-transcription factors. These were associated with morphological changes and enhancement of cell migration and invasion capabilities. Mechanistically, ABS induced E-cadherin cleavage via an MMP14-dependent proteolytic cascade. Apurinic/apyrimidinic endonuclease (APE1), also known as redox factor 1, is an essential multifunctional protein. APE1 silencing, or its redox-specific inhibitor (E3330), downregulated MMP14 and abrogated the ABS-induced EMT. APE1 and MMP14 coexpression levels were inversely correlated with E-cadherin expression in human EAC tissues and the squamocolumnar junctions of the L2-IL1ß transgenic mouse model of EAC. EAC patients with APE1high and EMThigh signatures had worse relapse-free survival than those with low levels. In addition, treatment of PDXs with E3330 restrained EMT characteristics and suppressed tumour invasion. CONCLUSION: Reflux conditions promote EMT via APE1 redox-dependent E-cadherin cleavage. APE1-redox function inhibitors can have a therapeutic role in EAC.


Asunto(s)
Adenocarcinoma , Reflujo Gastroesofágico , Humanos , Animales , Ratones , Metaloproteinasa 14 de la Matriz/metabolismo , Adenocarcinoma/patología , Oxidación-Reducción , Transición Epitelial-Mesenquimal , Cadherinas/metabolismo , Línea Celular Tumoral
13.
Gastroenterology ; 162(3): 890-906, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34883119

RESUMEN

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs) play an important role in colorectal cancer (CRC) progression and predict poor prognosis in CRC patients. However, the cellular origins of CAFs remain unknown, making it challenging to therapeutically target these cells. Here, we aimed to identify the origins and contribution of colorectal CAFs associated with poor prognosis. METHODS: To elucidate CAF origins, we used a colitis-associated CRC mouse model in 5 different fate-mapping mouse lines with 5-bromodeoxyuridine dosing. RNA sequencing of fluorescence-activated cell sorting-purified CRC CAFs was performed to identify a potential therapeutic target in CAFs. To examine the prognostic significance of the stromal target, CRC patient RNA sequencing data and tissue microarray were used. CRC organoids were injected into the colons of knockout mice to assess the mechanism by which the stromal gene contributes to colorectal tumorigenesis. RESULTS: Our lineage-tracing studies revealed that in CRC, many ACTA2+ CAFs emerge through proliferation from intestinal pericryptal leptin receptor (Lepr)+ cells. These Lepr-lineage CAFs, in turn, express melanoma cell adhesion molecule (MCAM), a CRC stroma-specific marker that we identified with the use of RNA sequencing. High MCAM expression induced by transforming growth factor ß was inversely associated with patient survival in human CRC. In mice, stromal Mcam knockout attenuated orthotopically injected colorectal tumoroid growth and improved survival through decreased tumor-associated macrophage recruitment. Mechanistically, fibroblast MCAM interacted with interleukin-1 receptor 1 to augment nuclear factor κB-IL34/CCL8 signaling that promotes macrophage chemotaxis. CONCLUSIONS: In colorectal carcinogenesis, pericryptal Lepr-lineage cells proliferate to generate MCAM+ CAFs that shape the tumor-promoting immune microenvironment. Preventing the expansion/differentiation of Lepr-lineage CAFs or inhibiting MCAM activity could be effective therapeutic approaches for CRC.


Asunto(s)
Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/fisiología , Carcinogénesis/patología , Linaje de la Célula , Neoplasias Colorrectales/patología , Células Madre Mesenquimatosas/fisiología , Actinas/genética , Actinas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígeno CD146/genética , Antígeno CD146/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Diferenciación Celular , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Mucosa Intestinal/patología , Antígeno Ki-67/metabolismo , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Organoides/patología , Organoides/fisiología , Pronóstico , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Análisis de Secuencia de ARN , Tasa de Supervivencia , Microambiente Tumoral
14.
Nature ; 550(7677): 529-533, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29019984

RESUMEN

In several organ systems, the transitional zone between different types of epithelium is a hotspot for pre-neoplastic metaplasia and malignancy, but the cells of origin for these metaplastic epithelia and subsequent malignancies remain unknown. In the case of Barrett's oesophagus, intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells. On the basis of a number of experimental models, several alternative cell types have been proposed as the source of this metaplasia but in all cases the evidence is inconclusive: no model completely mimics Barrett's oesophagus in terms of the presence of intestinal goblet cells. Here we describe a transitional columnar epithelium with distinct basal progenitor cells (p63+KRT5+KRT7+) at the squamous-columnar junction of the upper gastrointestinal tract in a mouse model. We use multiple models and lineage tracing strategies to show that this squamous-columnar junction basal cell population serves as a source of progenitors for the transitional epithelium. On ectopic expression of CDX2, these transitional basal progenitors differentiate into intestinal-like epithelium (including goblet cells) and thereby reproduce Barrett's metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues (including the anorectal junction) as well as in the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (believed to be a precursor of Barrett's oesophagus) are both characterized by the expansion of the transitional basal progenitor cells. Our findings reveal a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63+KRT5+KRT7+ basal cells in this zone are the cells of origin for multi-layered epithelium and Barrett's oesophagus.


Asunto(s)
Esófago de Barrett/patología , Linaje de la Célula , Células Epiteliales/patología , Epitelio/patología , Unión Esofagogástrica/patología , Células Madre/patología , Animales , Esófago de Barrett/genética , Esófago de Barrett/metabolismo , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Rastreo Celular , Esofagitis/metabolismo , Esofagitis/patología , Unión Esofagogástrica/metabolismo , Reflujo Gastroesofágico , Células Caliciformes/metabolismo , Células Caliciformes/patología , Humanos , Queratina-5/metabolismo , Queratina-7/metabolismo , Metaplasia/metabolismo , Metaplasia/patología , Ratones , Fosfoproteínas/metabolismo , Células Madre/metabolismo , Transactivadores/metabolismo
15.
Lancet Oncol ; 23(2): e62-e74, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35114133

RESUMEN

With increasing attention on the essential roles of the tumour microenvironment in recent years, the nervous system has emerged as a novel and crucial facilitator of cancer growth. In this Review, we describe the foundational, translational, and clinical advances illustrating how nerves contribute to tumour proliferation, stress adaptation, immunomodulation, metastasis, electrical hyperactivity and seizures, and neuropathic pain. Collectively, this expanding knowledge base reveals multiple therapeutic avenues for cancer neuroscience that warrant further exploration in clinical studies. We discuss the available clinical data, including ongoing trials investigating novel agents targeting the tumour-nerve axis, and the therapeutic potential for repurposing existing neuroactive drugs as an anti-cancer approach, particularly in combination with established treatment regimens. Lastly, we discuss the clinical challenges of these treatment strategies and highlight unanswered questions and future directions in the burgeoning field of cancer neuroscience.


Asunto(s)
Neoplasias/tratamiento farmacológico , Neurociencias , Dolor en Cáncer/tratamiento farmacológico , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/etiología , Neoplasias/inmunología , Neoplasias/patología , Fenómenos Fisiológicos del Sistema Nervioso/efectos de los fármacos , Microambiente Tumoral
16.
Am J Physiol Gastrointest Liver Physiol ; 322(6): G583-G597, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35319286

RESUMEN

Intestinal ganglionic cells in the adult enteric nervous system (ENS) are continually exposed to stimuli from the surrounding microenvironment and need at times to respond to disturbed homeostasis following acute intestinal injury. The kinase DCLK1 and intestinal Dclk1-positive cells have been reported to contribute to intestinal regeneration. Although Dclk1-positive cells are present in adult enteric ganglia, their cellular identity and response to acute injury have not been investigated in detail. Here, we reveal the presence of distinct Dclk1-tdTom+/CD49b+ glial-like and Dclk1-tdTom+/CD49b- neuronal cell types in adult myenteric ganglia. These ganglionic cells demonstrate distinct patterns of tracing over time yet show a similar expansion in response to elevated serotonergic signaling. Interestingly, Dclk1-tdTom+ glial-like and neuronal cell types appear resistant to acute irradiation injury-mediated cell death. Moreover, Dclk1-tdTom+/CD49b+ glial-like cells show prominent changes in gene expression profiles induced by injury, in contrast to Dclk1-tdTom+/CD49b- neuronal cell types. Finally, subsets of Dclk1-tdTom+/CD49b+ glial-like cells demonstrate prominent overlap with Nestin and p75NTR and strong responses to elevated serotonergic signaling or acute injury. These findings, together with their role in early development and their neural crest-like gene expression signature, suggest the presence of reserve progenitor cells in the adult Dclk1 glial cell lineage.NEW & NOTEWORTHY The kinase DCLK1 identifies glial-like and neuronal cell types in adult murine enteric ganglia, which resist acute injury-mediated cell death yet differ in their cellular response to injury. Interestingly, Dclk1-labeled glial-like cells show prominent transcriptional changes in response to injury and harbor features reminiscent of previously described enteric neural precursor cells. Our data thus add to recently emerging evidence of reserve cellular plasticity in the adult enteric nervous system.


Asunto(s)
Sistema Nervioso Entérico , Células-Madre Neurales , Animales , Sistema Nervioso Entérico/fisiología , Integrina alfa2/metabolismo , Ratones , Ratones Transgénicos , Neuroglía/metabolismo , Neuronas/metabolismo
17.
Gastroenterology ; 160(3): 781-796, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33129844

RESUMEN

BACKGROUND & AIMS: Immune checkpoint inhibitors have limited efficacy in many tumors. We investigated mechanisms of tumor resistance to inhibitors of programmed cell death-1 (PDCD1, also called PD-1) in mice with gastric cancer, and the role of its ligand, PD-L1. METHODS: Gastrin-deficient mice were given N-methyl-N-nitrosourea (MNU) in drinking water along with Helicobacter felis to induce gastric tumor formation; we also performed studies with H/K-ATPase-hIL1B mice, which develop spontaneous gastric tumors at the antral-corpus junction and have parietal cells that constitutively secrete interleukin 1B. Mice were given injections of an antibody against PD-1 or an isotype control before tumors developed, or anti-PD-1 and 5-fluorouracil and oxaliplatin, or an antibody against lymphocyte antigen 6 complex locus G (also called Gr-1), which depletes myeloid-derived suppressor cells [MDSCs]), after tumors developed. We generated knock-in mice that express PD-L1 specifically in the gastric epithelium or myeloid lineage. RESULTS: When given to gastrin-deficient mice before tumors grew, anti-PD-1 significantly reduced tumor size and increased tumor infiltration by T cells. However, anti-PD-1 alone did not have significant effects on established tumors in these mice. Neither early nor late anti-PD-1 administration reduced tumor growth in the presence of MDSCs in H/K-ATPase-hIL-1ß mice. The combination of 5-fluorouracil and oxaliplatin reduced MDSCs, increased numbers of intra-tumor CD8+ T cells, and increased the response of tumors to anti-PD-1; however, this resulted in increased tumor expression of PD-L1. Expression of PD-L1 by tumor or immune cells increased gastric tumorigenesis in mice given MNU. Mice with gastric epithelial cells that expressed PD-L1 did not develop spontaneous tumors, but they developed more and larger tumors after administration of MNU and H felis, with accumulation of MDSCs. CONCLUSIONS: In mouse models of gastric cancer, 5-fluorouracil and oxaliplatin reduce numbers of MDSCs to increase the effects of anti-PD-1, which promotes tumor infiltration by CD8+ T cells. However, these chemotherapeutic agents also induce expression of PD-L1 by tumor cells. Expression of PD-L1 by gastric epithelial cells increases tumorigenesis in response to MNU and H felis, and accumulation of MDSCs, which promote tumor progression. The timing and site of PD-L1 expression is therefore important in gastric tumorigenesis and should be considered in design of therapeutic regimens.


Asunto(s)
Infecciones por Helicobacter/inmunología , Células Supresoras de Origen Mieloide/inmunología , Neoplasias Experimentales/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias Gástricas/inmunología , Administración Oral , Animales , Carcinogénesis/inducido químicamente , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/inmunología , Mucosa Gástrica/inmunología , Mucosa Gástrica/microbiología , Mucosa Gástrica/patología , Gastrinas/genética , Infecciones por Helicobacter/inducido químicamente , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/microbiología , Helicobacter felis/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Metilnitrosourea/administración & dosificación , Ratones , Ratones Noqueados , Neoplasias Experimentales/inducido químicamente , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/microbiología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Neoplasias Gástricas/inducido químicamente , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/microbiología , Microambiente Tumoral/inmunología
18.
Gastroenterology ; 160(4): 1224-1239.e30, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33197448

RESUMEN

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs), key constituents of the tumor microenvironment, either promote or restrain tumor growth. Attempts to therapeutically target CAFs have been hampered by our incomplete understanding of these functionally heterogeneous cells. Key growth factors in the intestinal epithelial niche, bone morphogenetic proteins (BMPs), also play a critical role in colorectal cancer (CRC) progression. However, the crucial proteins regulating stromal BMP balance and the potential application of BMP signaling to manage CRC remain largely unexplored. METHODS: Using human CRC RNA expression data, we identified CAF-specific factors involved in BMP signaling, then verified and characterized their expression in the CRC stroma by in situ hybridization. CRC tumoroids and a mouse model of CRC hepatic metastasis were used to test approaches to modify BMP signaling and treat CRC. RESULTS: We identified Grem1 and Islr as CAF-specific genes involved in BMP signaling. Functionally, GREM1 and ISLR acted to inhibit and promote BMP signaling, respectively. Grem1 and Islr marked distinct fibroblast subpopulations and were differentially regulated by transforming growth factor ß and FOXL1, providing an underlying mechanism to explain fibroblast biological dichotomy. In patients with CRC, high GREM1 and ISLR expression levels were associated with poor and favorable survival, respectively. A GREM1-neutralizing antibody or fibroblast Islr overexpression reduced CRC tumoroid growth and promoted Lgr5+ intestinal stem cell differentiation. Finally, adeno-associated virus 8 (AAV8)-mediated delivery of Islr to hepatocytes increased BMP signaling and improved survival in our mouse model of hepatic metastasis. CONCLUSIONS: Stromal BMP signaling predicts and modifies CRC progression and survival, and it can be therapeutically targeted by novel AAV-directed gene delivery to the liver.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Neoplasias Colorrectales/patología , Inmunoglobulinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Hepáticas/secundario , Adulto , Anciano , Anciano de 80 o más Años , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Carcinogénesis/patología , Diferenciación Celular , Línea Celular Tumoral , Neoplasias Colorrectales/mortalidad , Progresión de la Enfermedad , Femenino , Hepatocitos/metabolismo , Humanos , Inmunoglobulinas/genética , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Pronóstico , Transducción de Señal , Microambiente Tumoral , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Eur J Nucl Med Mol Imaging ; 49(6): 2049-2063, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34882260

RESUMEN

PURPOSE: The incidence of esophageal adenocarcinoma (EAC) has been increasing for decades without significant improvements in treatment. Barrett's esophagus (BE) is best established risk factor for EAC, but current surveillance with random biopsies cannot predict progression to cancer in most BE patients due to the low sensitivity and specificity of high-definition white light endoscopy. METHODS: Here, we evaluated the membrane-bound highly specific Hsp70-specific contrast agent Tumor-Penetrating Peptide (Hsp70-TPP) in guided fluorescence molecular endoscopy biopsy. RESULTS: Hsp70 was significantly overexpressed as determined by IHC in dysplasia and EAC compared with non-dysplastic BE in patient samples (n = 12) and in high-grade dysplastic lesions in a transgenic (L2-IL1b) mouse model of BE. In time-lapse microscopy, Hsp70-TPP was rapidly taken up and internalized  by human BE dysplastic patient-derived organoids. Flexible fluorescence endoscopy of the BE mouse model allowed a specific detection of Hsp70-TPP-Cy5.5 that corresponded closely with the degree of dysplasia but not BE. Ex vivo application of Hsp70-TPP-Cy5.5 to freshly resected whole human EAC specimens revealed a high (> 4) tumor-to-background ratio and a specific detection of previously undetected tumor infiltrations. CONCLUSION: In summary, these findings suggest that Hsp70-targeted imaging using fluorescently labeled TPP peptide may improve tumor surveillance in BE patients.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Neoplasias Esofágicas , Adenocarcinoma/patología , Animales , Esófago de Barrett/diagnóstico por imagen , Esófago de Barrett/epidemiología , Biopsia , Neoplasias Esofágicas/diagnóstico por imagen , Esofagoscopía/métodos , Humanos , Ratones
20.
J Gastroenterol Hepatol ; 37(6): 973-982, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35384041

RESUMEN

BACKGROUND AND AIM: Humans with inborn errors of immunity (IEI), or primary immunodeficiencies, may be associated with a potential risk factor for early-onset gastrointestinal (GI) cancer. METHODS: We systematically reviewed all cases with clinical diagnoses of both an IEI and a GI cancer in three databases (MEDLINE, SCOPUS, and EMBASE). In total, 76 publications satisfying our inclusion criteria were identified, and data for 149 cases were analyzed. We also searched our institutional cancer registry for such cases. RESULTS: We identified 149 patients with both an IEI and a GI cancer, 95 presented gastric cancer, 13 small bowel cancer, 35 colorectal cancer, and 6 had an unspecified cancer or cancer at another site. Gastric and colon adenocarcinomas were the most common. For both gastric and colorectal cancers, age at onset was significantly earlier in patients with IEIs than in the general population, based on the SEER database. Common variable immunodeficiency (CVID) was the most common IEI associated with gastrointestinal cancer. About 12% of patients had molecular genetic diagnoses, the three most frequently implicated genes being ATM, CARMIL2, and CTLA4. Impaired humoral immunity and Epstein-Barr virus (EBV) infection were frequently reported as factors potentially underlying early-onset GI cancers in patients with IEIs. We identified one patient with CVID and early-onset gastric adenocarcinoma, recurrent diarrhea, and gastrointestinal CMV infection from a retrospective survey. CONCLUSION: Patients with IEIs should be considered at risk of early-onset GI cancers and should therefore undergo cancer screening at an earlier age.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Gastrointestinales , Neoplasias Gástricas , Infecciones por Virus de Epstein-Barr/complicaciones , Neoplasias Gastrointestinales/epidemiología , Herpesvirus Humano 4 , Humanos , Inmunogenética , Estudios Retrospectivos , Neoplasias Gástricas/epidemiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda