Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 709
Filtrar
1.
Nat Methods ; 20(10): 1605-1616, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37666982

RESUMEN

Recent progress in fluorescent protein development has generated a large diversity of near-infrared fluorescent proteins (NIR FPs), which are rapidly becoming popular probes for a variety of imaging applications. However, the diversity of NIR FPs poses a challenge for end-users in choosing the optimal one for a given application. Here we conducted a systematic and quantitative assessment of intracellular brightness, photostability, oligomeric state, chemical stability and cytotoxicity of 22 NIR FPs in cultured mammalian cells and primary mouse neurons and identified a set of top-performing FPs including emiRFP670, miRFP680, miRFP713 and miRFP720, which can cover a majority of imaging applications. The top-performing proteins were further validated for in vivo imaging of neurons in Caenorhabditis elegans, zebrafish, and mice as well as in mice liver. We also assessed the applicability of the selected NIR FPs for multicolor imaging of fusions, expansion microscopy and two-photon imaging.

2.
Plant Cell ; 36(1): 194-212, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37804098

RESUMEN

In plant leaves, starch is composed of glucan polymers that accumulate in chloroplasts as the products of photosynthesis during the day; starch is mobilized at night to continuously provide sugars to sustain plant growth and development. Efficient starch degradation requires the involvement of several enzymes, including ß-amylase and glucan phosphatase. However, how these enzymes cooperate remains largely unclear. Here, we show that the glucan phosphatase LIKE SEX FOUR 1 (LSF1) interacts with plastid NAD-dependent malate dehydrogenase (MDH) to recruit ß-amylase (BAM1), thus reconstituting the BAM1-LSF1-MDH complex. The starch hydrolysis activity of BAM1 drastically increased in the presence of LSF1-MDH in vitro. We determined the structure of the BAM1-LSF1-MDH complex by a combination of cryo-electron microscopy, crosslinking mass spectrometry, and molecular docking. The starch-binding domain of the dual-specificity phosphatase and carbohydrate-binding module of LSF1 was docked in proximity to BAM1, thus facilitating BAM1 access to and hydrolysis of the polyglucans of starch, thus revealing the molecular mechanism by which the LSF1-MDH complex improves the starch degradation activity of BAM1. Moreover, LSF1 is phosphatase inactive, and the enzymatic activity of MDH was dispensable for starch degradation, suggesting nonenzymatic scaffold functions for LSF1-MDH in starch degradation. These findings provide important insights into the precise regulation of starch degradation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , beta-Amilasa , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Malato Deshidrogenasa/metabolismo , beta-Amilasa/metabolismo , Simulación del Acoplamiento Molecular , Microscopía por Crioelectrón , Almidón/metabolismo , Glucanos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
3.
Nucleic Acids Res ; 52(D1): D919-D928, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37986229

RESUMEN

Long non-coding RNAs (lncRNAs) possess a wide range of biological functions, and research has demonstrated their significance in regulating major biological processes such as development, differentiation, and immune response. The accelerating accumulation of lncRNA research has greatly expanded our understanding of lncRNA functions. Here, we introduce LncSEA 2.0 (http://bio.liclab.net/LncSEA/index.php), aiming to provide a more comprehensive set of functional lncRNAs and enhanced enrichment analysis capabilities. Compared with LncSEA 1.0, we have made the following improvements: (i) We updated the lncRNA sets for 11 categories and extremely expanded the lncRNA scopes for each set. (ii) We newly introduced 15 functional lncRNA categories from multiple resources. This update not only included a significant amount of downstream regulatory data for lncRNAs, but also covered numerous epigenetic regulatory data sets, including lncRNA-related transcription co-factor binding, chromatin regulator binding, and chromatin interaction data. (iii) We incorporated two new lncRNA set enrichment analysis functions based on GSEA and GSVA. (iv) We adopted the snakemake analysis pipeline to track data processing and analysis. In summary, LncSEA 2.0 offers a more comprehensive collection of lncRNA sets and a greater variety of enrichment analysis modules, assisting researchers in a more comprehensive study of the functional mechanisms of lncRNAs.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN Largo no Codificante , Bases de Datos de Ácidos Nucleicos/normas , ARN Largo no Codificante/genética , Análisis de Datos
4.
PLoS Genet ; 19(2): e1010640, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802400

RESUMEN

The molecular mechanism of tumor metastasis, especially how metastatic tumor cells colonize in a distant site, remains poorly understood. Here we reported that ARHGAP15, a Rho GTPase activating protein, enhanced gastric cancer (GC) metastatic colonization, which was quite different from its reported role as a tumor suppressor gene in other cancers. It was upregulated in metastatic lymph nodes and significantly associated with a poor prognosis. Ectopic expression of ARHGAP15 promoted metastatic colonization of gastric cancer cells in murine lungs and lymph nodes in vivo or protected cells from oxidative-related death in vitro. However, genetic downregulation of ARHGAP15 had the opposite effect. Mechanistically, ARHGAP15 inactivated RAC1 and then decreased intracellular accumulation of reactive oxygen species (ROS), thus enhancing the antioxidant capacity of colonizing tumor cells under oxidative stress. This phenotype could be phenocopied by inhibition of RAC1 or rescued by the introduction of constitutively active RAC1 into cells. Taken together, these findings suggested a novel role of ARHGAP15 in promoting gastric cancer metastasis by quenching ROS through inhibiting RAC1 and its potential value for prognosis estimation and targeted therapy.


Asunto(s)
Neoplasias Gástricas , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/genética , Regulación hacia Abajo , Estrés Oxidativo , Proteína de Unión al GTP rac1/genética , Línea Celular Tumoral
5.
Arterioscler Thromb Vasc Biol ; 44(8): 1813-1832, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38957984

RESUMEN

BACKGROUND: Cellular communication among different types of vascular cells is indispensable for maintaining vascular homeostasis and preventing atherosclerosis. However, the biological mechanism involved in cellular communication among these cells and whether this biological mechanism can be used to treat atherosclerosis remain unknown. We hypothesized that endothelial autophagy mediates the cellular communication in vascular tissue through exosome-mediated delivery of atherosclerosis-related genes. METHODS: Rapamycin and adeno-associated virus carrying Atg7 short hairpin RNA under the Tie (TEK receptor tyrosine kinase) promoter were used to activate and inhibit vascular endothelial autophagy in high-fat diet-fed ApoE-/- mice, respectively. miRNA microarray, in vivo and in vitro experiments, and human vascular tissue were used to explore the effects of endothelial autophagy on endothelial function and atherosclerosis and its molecular mechanisms. Quantitative polymerase chain reaction and miRNA sequencing were performed to determine changes in miRNA expression in exosomes. Immunofluorescence and exosome coculture experiments were conducted to examine the role of endothelial autophagy in regulating the communication between endothelial cells and smooth muscle cells (SMCs) via exosomal miRNA. RESULTS: Endothelial autophagy was inhibited in thoracic aortas of high-fat diet-fed ApoE-/- mice. Furthermore, rapamycin alleviated high-fat diet-induced atherosclerotic burden and endothelial dysfunction, while endothelial-specific Atg7 depletion aggravated the atherosclerotic burden. miRNA microarray, in vivo and in vitro experiments, and human vascular tissue analysis revealed that miR-204-5p was significantly increased in endothelial cells after high-fat diet exposure, which directly targeted Bcl2 to regulate endothelial cell apoptosis. Importantly, endothelial autophagy activation decreased excess miR-204-5p by loading miR-204-5p into multivesicular bodies and secreting it through exosomes. Moreover, exosomal miR-204-5p can effectively transport to SMCs, alleviating SMC calcification by regulating target proteins such as RUNX2 (runt-related transcription factor 2). CONCLUSIONS: Our study revealed the exosomal pathway by which endothelial autophagy protects atherosclerosis: endothelial autophagy activation transfers miR-204-5p from endothelial cells to SMCs via exosomes, both preventing endothelial apoptosis and alleviating SMC calcification. REGISTRATION: URL: https://www.chictr.org.cn/; Unique identifier: ChiCTR2200064155.


Asunto(s)
Aterosclerosis , Autofagia , Comunicación Celular , Modelos Animales de Enfermedad , Exosomas , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , MicroARNs , Miocitos del Músculo Liso , MicroARNs/metabolismo , MicroARNs/genética , Exosomas/metabolismo , Exosomas/genética , Animales , Aterosclerosis/patología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Humanos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Masculino , Ratones , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Proteína 7 Relacionada con la Autofagia/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Células Cultivadas , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Placa Aterosclerótica , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/prevención & control , Enfermedades de la Aorta/metabolismo , Técnicas de Cocultivo , Transducción de Señal , Aorta Torácica/metabolismo , Aorta Torácica/patología , Dieta Alta en Grasa
6.
Exp Cell Res ; 437(2): 114014, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547959

RESUMEN

Extracellular matrix (ECM) stiffness regulates development and homeostasis in vivo and affects both physiological and pathological processes. A variety of studies have demonstrated that mRNAs, such as Piezo1, integrin ß1, and Yes-associated protein (YAP)/tafazzin (TAZ), can sense the mechanical signals induced by ECM stiffness and transmit them from the extracellular space into the cytoplasm. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have been reported to play important roles in various cellular processes. Therefore, the interactions between ncRNAs and ECM stiffness, as well as the underlying molecular mechanisms, have become intriguing. In this review, we summarize recent findings on miRNAs and lncRNAs that interact with ECM stiffness. Several miRNAs and lncRNAs are involved in the progression of liver cancer, breast cancer, osteosarcoma, and cardiovascular diseases under the regulation of ECM stiffness. Through these ncRNAs, cellular behaviors including cell differentiation, proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) are affected by ECM stiffness. We also integrate the ncRNA signaling pathways associated with ECM stiffness, in which typical signaling pathways like integrin ß1/TGFß1, phosphatidylinositol-3 kinase (PI3K)/AKT, and EMT are involved. Although our understanding of the relationships between ncRNAs and ECM stiffness is still limited, further investigations may provide new insights for disease treatment. ECM-associated ncRNAs may serve as disease biomarkers or be targeted by drugs.


Asunto(s)
MicroARNs , ARN Largo no Codificante , MicroARNs/genética , ARN Largo no Codificante/genética , Integrina beta1/metabolismo , Matriz Extracelular/metabolismo , Diferenciación Celular
7.
Artículo en Inglés | MEDLINE | ID: mdl-39033934

RESUMEN

BACKGROUND: Cilia loss and impaired motile ciliary functions are among the typical pathological features of chronic rhinosinusitis with nasal polyps (CRSwNP). IL17A and IL22 are the canonical cytokines of type 3 inflammation, exhibiting similar functional effects on epithelial cells. In this study, we sought to examine the effects of IL17A and IL22 on ciliated cells and investigate the potential involvement of Hippo-YAP signaling in their influence on ciliogenesis. METHODS: We assessed both the mRNA and protein expression levels of IL17A and IL22 in nasal tissues obtained from patients with CRSwNP and compared them to those from healthy controls. To further explore the impact of IL17A and IL22, we established a primary human nasal epithelial cell model using different concentrations (2 ng/mL, 10 ng/mL, 50 ng/mL) for a duration of 28 days in an air-liquid interface culture. Additionally, we employed the inhibitor verteporfin to investigate whether IL17A and IL22 exert their effects on ciliated cells via the Hippo-YAP pathway. RESULTS: The mRNA and protein levels of IL17A and IL22 in CRSwNP were significantly higher than those in healthy controls, revealing a robust correlation between IL17A and IL22. YAP was highly expressed in the nucleus of ciliated cells in CRSwNP and displayed a positive correlation with clinical symptoms. Both IL17A and IL22 were found to reduce the number of ciliated cells. IL17A, but not IL22, suppressed ciliogenesis by disrupting the proper development and docking of the basal body of ciliated cells, resulting in motile ciliary dysfunctions. Furthermore, the expression of YAP within the nucleus of ciliated cells gradually declined as these cells reached the final stage of differentiation. However, this process was obstructed by IL17A only. YAP inhibitors, such as verteporfin, markedly reversed the effects of IL17A by increasing the proportion of ciliated cells, suppressing nuclear YAP expression in these cells, and enhancing ciliary beating frequency. CONCLUSIONS: Both IL17A and IL22 are overexpressed in nasal epithelium of CRSwNP, which is associated with the impairment of epithelial cell differentiation. Furthermore, IL17A has been shown to exert a disruptive effect on morphogenesis of motile cilia via activation of YAP.

8.
J Neurochem ; 168(2): 83-99, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38183677

RESUMEN

In central nervous system (CNS), demyelination is a pathological process featured with a loss of myelin sheaths around axons, which is responsible for the diseases of multiple sclerosis, neuromyelitis optica, and so on. Transforming growth factor-beta1 (TGF-ß1) is a multifunctional cytokine participating in abundant physiological and pathological processes in CNS. However, the effects of TGF-ß1 on CNS demyelinating disease and its underlying mechanisms are controversial and not well understood. Herein, we evaluated the protective potential of TGF-ß1 in a rodent demyelinating model established by lysophosphatidylcholine (LPC) injection. It was identified that supplement of TGF-ß1 evidently rescued the cognitive deficit and motor dysfunction in LPC modeling mice assessed by novel object recognition and balance beam behavioral tests. Besides, quantified by luxol fast blue staining, immunofluorescence, and western blot, administration of TGF-ß1 was found to significantly ameliorate the demyelinating lesion and reactive astrogliosis by suppressing p38 MAPK pathway. Mechanistically, the results of in vitro experiments indicated that treatment of TGF-ß1 could directly promote the differentiation and migration of cultured oligodendrocytes. Our study revealed that modulating TGF-ß1 activity might serve as a promising and innovative therapeutic strategy in CNS demyelinating diseases.


Asunto(s)
Lesiones Encefálicas , Sustancia Blanca , Animales , Ratones , Gliosis/prevención & control , Inflamación , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Roedores , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Sustancia Blanca/metabolismo
9.
Anal Chem ; 96(32): 13096-13102, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39090997

RESUMEN

In attempts to obtain high-capacity Prussian blue nanomaterials, current efforts are predominantly focused on the particle-ensemble-level understanding of their structure-activity relationships. Complementarily, it would be insightful to screen out extraordinary individuals from the nanoparticle population. Using a simple and efficient technique of bright-field microscopy, this work enables, for the first time, quantitative characterization of the overall two-redox-center electrochemistry of single Prussian blue nanoparticles many at a time. Quantitative optical voltammograms with little interference from solvent breakdown and non-Faradaic electrode charging/discharging are extracted for each single nanoparticle, revealing clear heterogeneity among them. On this basis, the microscopic method allows a detailed comparative analysis between the two redox-active sites. It is found that while the synthesized nanoparticles show a similar specific capacity of the high-spin (HS-Fe) sites with STD/mean = 30%, most individual nanoparticles exhibit monodispersedly small capacities of the low-spin iron (LS-Fe) sites, only about 17±1 of the HS-Fe capacity. Most importantly, it is discovered that there is always a small fraction (∼8%) of the single nanoparticles showing an impressively tripled LS-Fe capacity. Facilitated by optical imaging, the discovery of this easily overlooked extraordinary subpopulation confers alternative opportunities for targeted efforts for material chemists to improve synthesis and material design based on these unusual individuals, which in turn implies the general significance of nanoparticle screening.

10.
Anal Chem ; 96(31): 12862-12874, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39045809

RESUMEN

Surface-enhanced Raman spectroscopy (SERS) detection platforms with high signal-to-noise ratio in the "biological-silent" region (1800-2800 cm-1) are presently being developed for sensing and imaging applications, overcoming the limitations of traditional SERS studies in the "fingerprint" region. Herein, a series of cyano-programmable Raman reporters (RRs) operating in the "biological-silent" region were designed based on 4-mercaptobenzonitrile derivatives and then embedded in core-shell Au@Ag nanostars using a "bottom-up" strategy to provide SERS enhancement and encapsulation protection. The approach enabled the "one-pot" readout interference-free detection of multiple bioamines (histamine, tyramine, and ß-phenethylamine) based on aptamer-driven magnetic-induced technology. Three cyano-encoded SERS tags resulted in separate SERS signals for histamine, tyramine, and ß-phenethylamine at 2220, 2251, and 2150 cm-1, respectively. A target-specific aptamer-complementary DNA competitive binding strategy allowed the formation of microscale core-satellite assemblies between Fe3O4-based magnetic beads and the SERS tags, enabling multiple SERS signals to be observed simultaneously under a 785 nm laser excitation laser. The LODs for detection of the three bioamines were 0.61 × 10-5, 2.67 × 10-5, and 1.78 × 10-5 mg L-1, respectively. The SERS-encoded platform utilizing programmable reporters provides a fast and sensitive approach for the simultaneous detection of multiple biomarkers, paving the way for routine SERS analyses of multiple analytes in complex matrices.


Asunto(s)
Oro , Plata , Espectrometría Raman , Tiramina , Espectrometría Raman/métodos , Plata/química , Oro/química , Tiramina/química , Tiramina/análisis , Nanopartículas del Metal/química , Fenetilaminas/análisis , Aptámeros de Nucleótidos/química , Histamina/análisis , Límite de Detección , Nitrilos/química
11.
Small ; : e2402310, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38726774

RESUMEN

Solar energy, as a renewable energy source, dominates the vast majority of human energy, which can be harvested and converted by photovoltaic solar cells. However, the intermittent availability of solar energy restricts the actual utilization circumstances of solar cells. Integrating photo-responsive electrodes into an energy storage device emerges as a dependable and executable strategy, fostering the creation of photo-stimulated batteries that seamlessly amalgamate the process of solar energy collection, conversion, and storage in one system. Endowed by virtues such as cost-effectiveness, facile manufacturing, safety, and environmental friendliness, photo-stimulated Zn-based batteries have attracted considerable attention. The progress report furnishes a brief overview, summarizing various photo-stimulated Zn-based batteries. Their configurations, operational principles, advancements, and the intricate engineering of photoelectrode designs are introduced, respectively. Through rigorous architectural design, photo-stimulated Zn-based batteries exhibit the ability to initiate charging by saving electricity usage, and in certain instances, even without the need for external electrical grids under illumination. Furthermore, the compensation of solar energy can be explored to improve the output electric energy. At last, opportunities and challenges toward photo-stimulated Zn-based batteries in the process of development are proposed and discussed in the hope of expanding their application scenarios and accelerating the commercialization progress.

12.
Fungal Genet Biol ; 173: 103911, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960372

RESUMEN

Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.


Asunto(s)
Basidiomycota , Cuerpos Fructíferos de los Hongos , Proteínas Fúngicas , Filogenia , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/crecimiento & desarrollo , Cuerpos Fructíferos de los Hongos/enzimología , Basidiomycota/genética , Basidiomycota/enzimología , Basidiomycota/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Agaricales/genética , Agaricales/enzimología , Agaricales/crecimiento & desarrollo , Agaricales/metabolismo , Regulación Fúngica de la Expresión Génica , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Esporas Fúngicas/enzimología
13.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36239391

RESUMEN

Discovering the biological basis of aging is one of the greatest remaining challenges for biomedical field. Work on the biology of aging has discovered a range of interventions and pathways that control aging rate. Thus, we developed AgingBank (http://bio-bigdata.hrbmu.edu.cn/AgingBank) which was a manually curated comprehensive database and high-throughput analysis platform that provided experimentally supported multi-omics data relevant to aging in multiple species. AgingBank contained 3771 experimentally verified aging-related multi-omics entries from studies across more than 50 model organisms, including human, mice, worms, flies and yeast. The records included genome (single nucleotide polymorphism, copy number variation and somatic mutation), transcriptome [mRNA, long non-coding RNA (lncRNA), microRNA (miRNA) and circular RNA (circRNA)], epigenome (DNA methylation and histone modification), other modification and regulation elements (transcription factor, enhancer, promoter, gene silence, alternative splicing and RNA editing). In addition, AgingBank was also an online computational analysis platform containing five useful tools (Aging Landscape, Differential Expression Analyzer, Data Heat Mapper, Co-Expression Network and Functional Annotation Analyzer), nearly 112 high-throughput experiments of genes, miRNAs, lncRNAs, circRNAs and methylation sites related with aging. Cancer & Aging module was developed to explore the relationships between aging and cancer. Submit & Analysis module allows users upload and analyze their experiments data. AginBank is a valuable resource for elucidating aging-related biomarkers and relationships with other diseases.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Ratones , Animales , Variaciones en el Número de Copia de ADN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Circular , MicroARNs/genética , Neoplasias/genética , Bases del Conocimiento , Envejecimiento/genética
14.
Bioinformatics ; 39(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37856329

RESUMEN

MOTIVATION: Genome-wide association studies (GWAS) benefit from the increasing availability of genomic data and cross-institution collaborations. However, sharing data across institutional boundaries jeopardizes medical data confidentiality and patient privacy. While modern cryptographic techniques provide formal secure guarantees, the substantial communication and computational overheads hinder the practical application of large-scale collaborative GWAS. RESULTS: This work introduces an efficient framework for conducting collaborative GWAS on distributed datasets, maintaining data privacy without compromising the accuracy of the results. We propose a novel two-step strategy aimed at reducing communication and computational overheads, and we employ iterative and sampling techniques to ensure accurate results. We instantiate our approach using logistic regression, a commonly used statistical method for identifying associations between genetic markers and the phenotype of interest. We evaluate our proposed methods using two real genomic datasets and demonstrate their robustness in the presence of between-study heterogeneity and skewed phenotype distributions using a variety of experimental settings. The empirical results show the efficiency and applicability of the proposed method and the promise for its application for large-scale collaborative GWAS. AVAILABILITY AND IMPLEMENTATION: The source code and data are available at https://github.com/amioamo/TDS.


Asunto(s)
Estudio de Asociación del Genoma Completo , Privacidad , Humanos , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Confidencialidad , Programas Informáticos
15.
Am J Pathol ; 193(12): 1988-2000, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37741451

RESUMEN

Dual-specificity phosphatase 6 (DUSP6) is a specific phosphatase for mitogen-activated protein kinase (MAPK). This study used a high-fat diet (HFD)-induced murine nonalcoholic fatty liver disease model to investigate the role of DUSP6 in this disease. Wild-type (WT) and Dusp6-haploinsufficiency mice developed severe obesity and liver pathology consistent with nonalcoholic fatty liver disease when exposed to HFD. In contrast, Dusp6-knockout (KO) mice completely eliminated these phenotypes. Furthermore, primary hepatocytes isolated from WT mice exposed to palmitic and oleic acids exhibited abundant intracellular lipid accumulation, whereas hepatocytes from Dusp6-KO mice showed minimal lipid accumulation. Transcriptome analysis revealed significant down-regulation of genes encoding cytochrome P450 4A (CYP4A), known to promote ω-hydroxylation of fatty acids and hepatic steatosis, in Dusp6-KO hepatocytes compared with that in WT hepatocytes. Diminished CYP4A expression was observed in the liver of Dusp6-KO mice compared with WT and Dusp6-haploinsufficiency mice. Knockdown of DUSP6 in HepG2, a human liver-lineage cell line, also promoted a reduction of lipid accumulation, down-regulation of CYP4A, and up-regulation of phosphorylated/activated MAPK. Furthermore, inhibition of MAPK activity promoted lipid accumulation in DUSP6-knockdown HepG2 cells without affecting CYP4A expression, indicating that CYP4A expression is independent of MAPK activation. These findings highlight the significant role of DUSP6 in HFD-induced steatohepatitis through two distinct pathways involving CYP4A and MAPK.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Ratones , Citocromo P-450 CYP4A/metabolismo , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología
16.
Crit Rev Microbiol ; : 1-12, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132685

RESUMEN

Dental caries, as a biofilm-related disease, is closely linked to dysbiosis in microbial ecology within dental biofilms. Beyond its impact on oral health, bacteria within the oral cavity pose systemic health risks by potentially entering the bloodstream, thereby increasing susceptibility to bacterial endocarditis, among other related diseases. Streptococcus mutans, a principal cariogenic bacterium, possesses virulence factors crucial to the pathogenesis of dental caries. Its ability to adhere to tooth surfaces, produce glucans for biofilm formation, and metabolize sugars into lactic acid contributes to enamel demineralization and the initiation of carious lesions. Its aciduricity and ability to produce bacteriocins enable a competitive advantage, allowing it to thrive in acidic environments and dominate in changing oral microenvironments. In contrast, commensal streptococci, such as Streptococcus sanguinis, Streptococcus gordonii, and Streptococcus salivarius, act as primary colonizers and compete with S. mutans for adherence sites and nutrients during biofilm formation. This competition involves the production of alkali, peroxides, and antibacterial substances, thereby inhibiting S. mutans growth and maintaining microbial balance. This dynamic interaction influences the balance of oral microbiota, with disruptions leading to shifts in microbial composition that are marked by rapid increases in S. mutans abundance, contributing to the onset of dental caries. Thus, understanding the dynamic interactions between commensal and pathogenic bacteria in oral microecology is important for developing effective strategies to promote oral health and prevent dental caries. This review highlights the roles and competitive interactions of commensal bacteria and S. mutans in oral microecology, emphasizing the importance of maintaining oral microbial balance for health, and discusses the pathological implications of perturbations in this balance.

17.
Eur J Nucl Med Mol Imaging ; 51(7): 1856-1868, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38355741

RESUMEN

PURPOSE: Accurately and early detection of intestinal fibrosis in Crohn's disease (CD) is crucial for clinical management yet remains an unmet need. Fibroblast activation protein inhibitor (FAPI) PET/CT has emerged as a promising tool to assess fibrosis. We aimed to investigate the diagnostic capability of [18F]F-FAPI PET/CT in detecting intestinal fibrosis and compared it with[18F]F-FDG PET/CT and magnetization transfer MR imaging (MTI). METHODS: Twenty-two rats underwent TNBS treatment to simulate fibrosis development, followed by three quantitative imaging sessions within one week. Mean and maximum standardized uptake values (SUVmean and SUVmax) were calculated on[18F]F-FAPI and [18F]F-FDG PET/CT, along with normalized magnetization transfer ratio on MTI. Intestinal fibrosis was assessed pathologically, with MTI serving as imaging standard for fibrosis. The diagnostic efficacy of imaging parameters in fibrosis was compared using pathological and imaging standards. Ten patients with 34 bowel strictures were prospectively recruited to validate their diagnostic performance, using the identical imaging protocol. RESULTS: In CD patients, the accuracy of FAPI uptake (both AUCs = 0.87, both P ≤ 0.01) in distinguishing non-to-mild from moderate-to-severe fibrosis was higher than FDG uptake (both AUCs = 0.82, P ≤ 0.01) and comparable to MTI (AUCs = 0.90, P ≤ 0.001). In rats, FAPI uptake responded earlier to fibrosis development than FDG and MTI; consistently, during early phase, FAPI uptake showed a stronger correlation (SUVmean: R = 0.69) with pathological fibrosis than FDG (SUVmean: R = 0.17) and MTI (R = 0.52). CONCLUSION: The diagnostic efficacy of [18F]F-FAPI PET/CT in detecting CD fibrosis is superior to [18F]F-FDG PET/CT and comparable to MTI, exhibiting great potential for early detection of intestinal fibrosis.


Asunto(s)
Enfermedad de Crohn , Modelos Animales de Enfermedad , Fibrosis , Fluorodesoxiglucosa F18 , Intestinos , Imagen por Resonancia Magnética , Tomografía Computarizada por Tomografía de Emisión de Positrones , Enfermedad de Crohn/diagnóstico por imagen , Enfermedad de Crohn/complicaciones , Animales , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Ratas , Fibrosis/diagnóstico por imagen , Humanos , Masculino , Femenino , Adulto , Intestinos/diagnóstico por imagen , Intestinos/patología , Estudios Prospectivos , Persona de Mediana Edad
18.
Chemistry ; 30(16): e202303889, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38288640

RESUMEN

Directed evolution stands as a seminal technology for generating novel protein functionalities, a cornerstone in biocatalysis, metabolic engineering, and synthetic biology. Today, with the development of various mutagenesis methods and advanced analytical machines, the challenge of diversity generation and high-throughput screening platforms is largely solved, and one of the remaining challenges is: how to empower the potential of single beneficial substitutions with recombination to achieve the epistatic effect. This review overviews experimental and computer-assisted recombination methods in protein engineering campaigns. In addition, integrated and machine learning-guided strategies were highlighted to discuss how these recombination approaches contribute to generating the screening library with better diversity, coverage, and size. A decision tree was finally summarized to guide the further selection of proper recombination strategies in practice, which was beneficial for accelerating protein engineering.


Asunto(s)
Evolución Molecular Dirigida , Ingeniería de Proteínas , Mutagénesis , Recombinación Genética , Poder Psicológico
19.
BMC Cancer ; 24(1): 269, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408928

RESUMEN

BACKGROUND: Immune checkpoint inhibitors (ICIs) can lead to life-threatening pneumonitis, and pre-existing interstitial lung abnormalities (ILAs) are a risk factor for checkpoint inhibitor pneumonitis (CIP). However, the subjective assessment of ILA and the lack of standardized methods restrict its clinical utility as a predictive factor. This study aims to identify non-small cell lung cancer (NSCLC) patients at high risk of CIP using quantitative imaging. METHODS: This cohort study involved 206 cases in the training set and 111 cases in the validation set. It included locally advanced or metastatic NSCLC patients who underwent ICI therapy. A deep learning algorithm labeled the interstitial lesions and computed their volume. Two predictive models were developed to predict the probability of grade ≥ 2 CIP or severe CIP (grade ≥ 3). Cox proportional hazard models were employed to analyze predictors of progression-free survival (PFS). RESULTS: In a training cohort of 206 patients, 21.4% experienced CIP. Two models were developed to predict the probability of CIP based on different predictors. Model 1 utilized age, histology, and preexisting ground glass opacity (GGO) percentage of the whole lung to predict grade ≥ 2 CIP, while Model 2 used histology and GGO percentage in the right lower lung to predict grade ≥ 3 CIP. These models were validated, and their accuracy was assessed. In another exploratory analysis, the presence of GGOs involving more than one lobe on pretreatment CT scans was identified as a risk factor for progression-free survival. CONCLUSIONS: The assessment of GGO volume and distribution on pre-treatment CT scans could assist in monitoring and manage the risk of CIP in NSCLC patients receiving ICI therapy. CLINICAL RELEVANCE STATEMENT: This study's quantitative imaging and computational analysis can help identify NSCLC patients at high risk of CIP, allowing for better risk management and potentially improved outcomes in those receivingICI treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neumonía , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Estudios de Cohortes , Pulmón/patología , Neumonía/patología , Tomografía Computarizada por Rayos X , Estudios Retrospectivos
20.
Eur Radiol ; 34(2): 1232-1246, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37646811

RESUMEN

Celiac disease (CD), triggered by exposure to gluten in genetically susceptible individuals, is an immune-mediated small bowel disease affecting about 1% of the population worldwide. But the prevalence of CD varies with age, sex, and location. A strict gluten-free diet remains the primary treatment for CD, currently. Most of patients with CD respond well to gluten-free diet with good prognosis, while some patients fail to get symptomatic relief or histological remission (e.g., nonresponsive or refractory CD). Because of heterogeneous clinical appearance, the diagnosis of CD is difficult. Moreover, malignant complications and poor outcomes accompanied with refractory CD present great challenges in disease management. Over the past three decades, cross-sectional imaging techniques (computed tomography [CT] and magnetic resonance imaging [MRI]) play an important role in small bowel inflammatory and neoplastic diseases. Compared with endoscopic techniques, cross-sectional imaging permits clearly presentation of both intraluminal and extraluminal abnormalities. It provides vascular and functional information, thus improving the possibility as diagnostic and follow-up tool. The value of cross-sectional imaging for patients with suspected or confirmed CD has been gradually demonstrated. Studies revealed that certain features suggested by cross-sectional imaging could help to establish the early diagnosis of CD. Besides, the potential contributions of cross-sectional imaging may lie in the evaluation of disease activity and severity, which helps guiding management strategies. The purpose of this review is to provide current overviews and future directions of cross-sectional imaging in adult CD, thus facilitating the understanding and application in clinical practice. CLINICAL RELEVANCE STATEMENT: In this review, we systematically summarized the existing knowledge of cross-sectional imaging in adult CD and analyzed their possible roles in clinical practice, including disease diagnosis, complication identification, treatment evaluation, and prognostic prediction. KEY POINTS: • Regarding a condition described as "celiac iceberg", celiac disease remains underdiagnosed and undertreated. • Cross-sectional imaging is helpful in clinical management of celiac disease, including disease diagnosis, complication identification, treatment evaluation, and prognostic prediction. • Cross-sectional imaging should be considered as the valuable examination in patients suspected from celiac disease.


Asunto(s)
Enfermedad Celíaca , Humanos , Adulto , Enfermedad Celíaca/diagnóstico por imagen , Enfermedad Celíaca/complicaciones , Glútenes/efectos adversos , Dieta Sin Gluten , Intestino Delgado/diagnóstico por imagen , Pronóstico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda