RESUMEN
We present a lattice QCD calculation of the nucleon electric polarizabilities at the physical pion mass. Our findings reveal the substantial contributions of the Nπ states to these polarizabilities. Without considering these contributions, the lattice results fall significantly below the experimental values, consistent with previous lattice studies. This observation has motivated us to compute both the parity-negative Nπ scattering up to a nucleon momentum of â¼0.5 GeV in the center-of-mass frame and corresponding Nγ^{*}âNπ matrix elements using lattice QCD. Our results confirm that incorporating dynamic Nπ contributions is crucial for a reliable determination of the polarizabilities from lattice QCD. This methodology lays the groundwork for future lattice QCD investigations into various other polarizabilities.
RESUMEN
OBJECTIVE: Adaptive planning to accommodate anatomic changes during treatment often requires repeated segmentation. In this study, prior patient-specific data was integrateda into a registration-guided multi-channel multi-path (Rg-MCMP) segmentation framework to improve the accuracy of repeated clinical target volume (CTV) segmentation. METHODS: This study was based on CT image datasets for a total of 90 cervical cancer patients who received two courses of radiotherapy. A total of 15 patients were selected randomly as the test set. In the Rg-MCMP segmentation framework, the first-course CT images (CT1) were registered to second-course CT images (CT2) to yield aligned CT images (aCT1), and the CTV in the first course (CTV1) was propagated to yield aligned CTV contours (aCTV1). Then, aCT1, aCTV1, and CT2 were combined as the inputs for 3D U-Net consisting of a channel-based multi-path feature extraction network. The performance of the Rg-MCMP segmentation framework was evaluated and compared with the single-channel single-path model (SCSP), the standalone registration methods, and the registration-guided multi-channel single-path (Rg-MCSP) model. The Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and average surface distance (ASD) were used as the metrics. RESULTS: The average DSC of CTV for the deformable image DIR-MCMP model was found to be 0.892, greater than that of the standalone DIR (0.856), SCSP (0.837), and DIR-MCSP (0.877), which were improvements of 4.2%, 6.6%, and 1.7%, respectively. Similarly, the rigid body DIR-MCMP model yielded an average DSC of 0.875, which exceeded standalone RB (0.787), SCSP (0.837), and registration-guided multi-channel single-path (0.848), which were improvements of 11.2%, 4.5%, and 3.2%, respectively. These improvements in DSC were statistically significant (p < 0.05). CONCLUSION: The proposed Rg-MCMP framework achieved excellent accuracy in CTV segmentation as part of the adaptive radiotherapy workflow.
Asunto(s)
Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Tomografía Computarizada por Rayos X , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/radioterapia , Neoplasias del Cuello Uterino/diagnóstico por imagen , Femenino , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Radioterapia de Intensidad Modulada/métodos , Algoritmos , Órganos en Riesgo/efectos de la radiación , Procesamiento de Imagen Asistido por Computador/métodos , PronósticoRESUMEN
BACKGROUND: Recurrent malignant pleural effusion (MPE) resulting from non-small-cell lung cancer (NSCLC) is easily refractory to conventional therapeutics and lacks predictive markers. The cellular or genetic signatures of recurrent MPE still remain largely uncertain. METHODS: 16 NSCLC patients with pleural effusions were recruited, followed by corresponding treatments based on primary tumours. Non-recurrent or recurrent MPE was determined after 3-6 weeks of treatments. The status of MPE was verified by computer tomography (CT) and cytopathology, and the baseline pleural fluids were collected for single-cell RNA sequencing (scRNA-seq). Samples were then integrated and profiled. Cellular communications and trajectories were inferred by bioinformatic algorithms. Comparative analysis was conducted and the results were further validated by quantitative polymerase chain reaction (qPCR) in a larger MPE cohort from the authors' centre (n = 64). RESULTS: The scRNA-seq revealed that 33 590 cells were annotated as 7 major cell types and further characterized into 14 cell clusters precisely. The cell cluster C1, classified as Epithelial Cell Adhesion Molecule (EpCAM)+ metastatic cancer cell and correlated with activation of tight junction and adherence junction, was significantly enriched in the recurrent MPE group, in which Claudin-4 (CLDN4) was identified. The subset cell cluster C3 of C1, which was enriched in recurrent MPE and demonstrated a phenotype of ameboidal-type cell migration, also showed a markedly higher expression of CLDN4. Meanwhile, the expression of CLDN4 was positively correlated with E74 Like ETS Transcription Factor 3 (ELF3), EpCAM and Tumour Associated Calcium Signal Transducer 2 (TACSTD2), independent of driver-gene status. CLDN4 was also found to be associated with the expression of Hypoxia Inducible Factor 1 Subunit Alpha (HIF1A) and Vascular Endothelial Growth Factor A (VEGFA), and the cell cluster C1 was the major mediator in cellular communication of VEGFA signalling. In the extensive MPE cohort, a notably increased expression of CLDN4 in cells from pleural effusion among patients diagnosed with recurrent MPE was observed, compared with the non-recurrent group, which was also associated with a trend towards worse overall survival (OS). CONCLUSIONS: CLDN4 could be considered as a predictive marker of recurrent MPE among patients with advanced NSCLC. Further validation for its clinical value in cohorts with larger sample size and in-depth mechanism studies on its biological function are warranted. TRIAL REGISTRATION: Not applicable.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Derrame Pleural Maligno , Humanos , Carcinoma de Pulmón de Células no Pequeñas/complicaciones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/metabolismo , Factor A de Crecimiento Endotelial Vascular , Claudina-4/genética , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Molécula de Adhesión Celular Epitelial , Perfilación de la Expresión GénicaRESUMEN
With the impact of the COVID-19 pandemic, global container freights have increased dramatically since the second half of 2020, which has significantly hampered the booking activities of fragmented transportation space for small and medium-sized import and export enterprises (SMIEEs). To provide SMIEEs with an effective tool for controlling shipping costs, we propose the design principles of index microinsurance under fragmented scenarios and design the container freight index microinsurance (CFIM) based on a comprehensive analysis of the term, compensation and share structures. We further establish the pricing model for the CFIM and selection procedure for product optimization, and illustrate the framework with a case study based on the data of the China Containerized Freight Index Europe Service, which demonstrates the good performance of the designed product even under extreme market conditions. The design principles proposed can shed light on the innovation of index microinsurance product that meets fragmented needs and the newly designed CFIM, along with the pricing and optimization procedure, provides practitioners with useful tools for cost control.
RESUMEN
2D metal-organic frameworks (MOFs) are promising 2D materials with a wide range of applications due to their unique physical and chemical properties. However, 2D MOFs are prone to stacking due to their ultrathin thickness, and the high-yield preparation method of 2D MOFs is highly demanded. In this work, a rapid and scalable method is novelistically presented to prepare 2D MOFs with highly colloidal stability and high yield through coordination modulation at room temperature. A well-ordered CuBDC-MBA nanosheet (BDC, 1,4-benzenedicarboxylic; MBA, 4-methoxybenzoic acid) fabricated by introducing MBA as a modulator exhibits extremely stable colloid suspension for 6 months and the yield of well-dispersed CuBDC-MBA is higher than 88.6%. As MBA successfully participates in synthetic coordination of CuBDC-MBA and is presumably installed on the edge of 2D MOFs with low MBA content due to anisotropic growth, CuBDC-MBA and CuBDC are similar with respect to nanosheet morphology, integrated crystal structure, and porosity. Moreover, well-dispersed CuBDC-MBA shows higher catalytic effectiveness for the cycloaddition reaction of CO2 with 1.5 times higher yield than CuBDC. Thus, this method can provide a new idea based on coordination modulation to directly fabricate 2D MOFs with purposeful properties.
RESUMEN
A covalent post-assembly strategy is developed to prepare a composite of dispersive MOF particles in an aerogel matrix. Briefly, the anhydride group-decorated MOF (UiO-66-NH2) particles covalently coupled with polyimide (PI) monomers through a one-pot amidation polymerization reaction, succeeding a process of gel-sol, freeze-drying and thermal-imidization to obtain the UiO-66-PI aerogel. The designed composite shows outstanding catalytic activity in CO2 cycloaddition and excellent adsorption capacity for dyes.