Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 6.196
Filtrar
Más filtros

Publication year range
1.
Cell ; 183(3): 739-751.e8, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32991842

RESUMEN

The SARS-CoV-2 spike (S) protein variant D614G supplanted the ancestral virus worldwide, reaching near fixation in a matter of months. Here we show that D614G was more infectious than the ancestral form on human lung cells, colon cells, and on cells rendered permissive by ectopic expression of human ACE2 or of ACE2 orthologs from various mammals, including Chinese rufous horseshoe bat and Malayan pangolin. D614G did not alter S protein synthesis, processing, or incorporation into SARS-CoV-2 particles, but D614G affinity for ACE2 was reduced due to a faster dissociation rate. Assessment of the S protein trimer by cryo-electron microscopy showed that D614G disrupts an interprotomer contact and that the conformation is shifted toward an ACE2 binding-competent state, which is modeled to be on pathway for virion membrane fusion with target cells. Consistent with this more open conformation, neutralization potency of antibodies targeting the S protein receptor-binding domain was not attenuated.


Asunto(s)
Betacoronavirus/fisiología , Betacoronavirus/ultraestructura , Glicoproteína de la Espiga del Coronavirus/fisiología , Glicoproteína de la Espiga del Coronavirus/ultraestructura , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/patogenicidad , COVID-19 , Células Cultivadas , Infecciones por Coronavirus/virología , Femenino , Variación Genética , Células HEK293 , Humanos , Masculino , Modelos Moleculares , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/virología , Conformación Proteica , Procesamiento Proteico-Postraduccional , Receptores de Coronavirus , Receptores Virales/metabolismo , SARS-CoV-2 , Especificidad de la Especie
2.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38215751

RESUMEN

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Asunto(s)
Linfocitos T CD8-positivos , Serotonina , Linfocitos T CD8-positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacología , Procesamiento Proteico-Postraduccional , Transducción de Señal
3.
Nature ; 617(7962): 724-729, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138081

RESUMEN

The carbon dioxide and carbon monoxide electroreduction reactions, when powered using low-carbon electricity, offer pathways to the decarbonization of chemical manufacture1,2. Copper (Cu) is relied on today for carbon-carbon coupling, in which it produces mixtures of more than ten C2+ chemicals3-6: a long-standing challenge lies in achieving selectivity to a single principal C2+ product7-9. Acetate is one such C2 compound on the path to the large but fossil-derived acetic acid market. Here we pursued dispersing a low concentration of Cu atoms in a host metal to favour the stabilization of ketenes10-chemical intermediates that are bound in monodentate fashion to the electrocatalyst. We synthesize Cu-in-Ag dilute (about 1 atomic per cent of Cu) alloy materials that we find to be highly selective for acetate electrosynthesis from CO at high *CO coverage, implemented at 10 atm pressure. Operando X-ray absorption spectroscopy indicates in situ-generated Cu clusters consisting of <4 atoms as active sites. We report a 12:1 ratio, an order of magnitude increase compared to the best previous reports, in the selectivity for acetate relative to all other products observed from the carbon monoxide electroreduction reaction. Combining catalyst design and reactor engineering, we achieve a CO-to-acetate Faradaic efficiency of 91% and report a Faradaic efficiency of 85% with an 820-h operating time. High selectivity benefits energy efficiency and downstream separation across all carbon-based electrochemical transformations, highlighting the importance of maximizing the Faradaic efficiency towards a single C2+ product11.

4.
Mol Cell ; 78(3): 506-521.e6, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32386543

RESUMEN

Higher-order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we find that large (>7.3 kb) DNA methylation nadirs (termed "grand canyons") can form long loops connecting anchor loci that may be dozens of megabases (Mb) apart, as well as inter-chromosomal links. The interacting loci cover a total of ∼3.5 Mb of the human genome. The strongest interactions are associated with repressive marks made by the Polycomb complex and are diminished upon EZH2 inhibitor treatment. The data are suggestive of the formation of these loops by interactions between repressive elements in the loci, forming a genomic subcompartment, rather than by cohesion/CTCF-mediated extrusion. Interestingly, unlike previously characterized subcompartments, these interactions are present only in particular cell types, such as stem and progenitor cells. Our work reveals that H3K27me3-marked large DNA methylation grand canyons represent a set of very-long-range loops associated with cellular identity.


Asunto(s)
Cromatina/química , Cromatina/genética , Metilación de ADN , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Humanos , Hibridación Fluorescente in Situ , Lisina/genética , Lisina/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción SOXB1/genética , Proteína de la Caja Homeótica de Baja Estatura/genética , Factores de Transcripción/genética
5.
Genome Res ; 34(5): 740-756, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38744529

RESUMEN

Although DNA N 6-adenine methylation (6mA) is best known in prokaryotes, its presence in eukaryotes has recently generated great interest. Biochemical and genetic evidence supports that AMT1, an MT-A70 family methyltransferase (MTase), is crucial for 6mA deposition in unicellular eukaryotes. Nonetheless, the 6mA transmission mechanism remains to be elucidated. Taking advantage of single-molecule real-time circular consensus sequencing (SMRT CCS), here we provide definitive evidence for semiconservative transmission of 6mA in Tetrahymena thermophila In wild-type (WT) cells, 6mA occurs at the self-complementary ApT dinucleotide, mostly in full methylation (full-6mApT); after DNA replication, hemi-methylation (hemi-6mApT) is transiently present on the parental strand, opposite to the daughter strand readily labeled by 5-bromo-2'-deoxyuridine (BrdU). In ΔAMT1 cells, 6mA predominantly occurs as hemi-6mApT. Hemi-to-full conversion in WT cells is fast, robust, and processive, whereas de novo methylation in ΔAMT1 cells is slow and sporadic. In Tetrahymena, regularly spaced 6mA clusters coincide with the linker DNA of nucleosomes arrayed in the gene body. Importantly, in vitro methylation of human chromatin by the reconstituted AMT1 complex recapitulates preferential targeting of hemi-6mApT sites in linker DNA, supporting AMT1's intrinsic and autonomous role in maintenance methylation. We conclude that 6mA is transmitted by a semiconservative mechanism: full-6mApT is split by DNA replication into hemi-6mApT, which is restored to full-6mApT by AMT1-dependent maintenance methylation. Our study dissects AMT1-dependent maintenance methylation and AMT1-independent de novo methylation, reveals a 6mA transmission pathway with a striking similarity to 5-methylcytosine (5mC) transmission at the CpG dinucleotide, and establishes 6mA as a bona fide eukaryotic epigenetic mark.


Asunto(s)
Adenina , Metilación de ADN , Tetrahymena thermophila , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Adenina/metabolismo , Adenina/análogos & derivados , Replicación del ADN , ADN Protozoario/genética , ADN Protozoario/metabolismo
6.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466721

RESUMEN

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Asunto(s)
Aedes , Receptores de Esteroides , Animales , Femenino , Humanos , Aedes/genética , Aedes/metabolismo , Ecdisona/metabolismo , Mosquitos Vectores/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Homeostasis/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
7.
Nat Chem Biol ; 20(6): 721-731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38302606

RESUMEN

Protein labeling approaches are important to study proteins in living cells, and genome editing tools make it possible to tag endogenous proteins to address the concerns associated with overexpression. Here we established RNA editing-mediated noncanonical amino acids (ncAAs) protein tagging (RENAPT) to site-specifically label endogenous proteins with ncAAs in living cells. RENAPT labels protein in a temporary and nonheritable manner and is not restricted by protospacer adjacent motif sequence. Using a fluorescent ncAA or ncAA with a bio-orthogonal reaction handle for subsequent dye labeling, we demonstrated that a variety of endogenous proteins can be imaged at their specific subcellular locations. In addition, two proteins can be tagged individually and simultaneously using two different ncAAs. Furthermore, endogenous ion channels and neuron-specific proteins can be real-time labeled in primary neurons. Thus, RENAPT presents a promising platform with broad applicability for tagging endogenous proteins in living cells to study their localization and functions.


Asunto(s)
Código Genético , Edición de ARN , Humanos , Animales , Neuronas/metabolismo , Células HEK293 , Aminoácidos/química , Aminoácidos/metabolismo , Aminoácidos/genética , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Colorantes Fluorescentes/química
8.
PLoS Biol ; 21(11): e3002379, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37944100

RESUMEN

[This corrects the article DOI: 10.1371/journal.pbio.3000324.].

9.
Nature ; 577(7791): 509-513, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31747679

RESUMEN

The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources1. However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge2. Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity3-5, and this has recently been explored for the reaction on copper by controlling morphology6, grain boundaries7, facets8, oxidation state9 and dopants10. Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far9), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums11, adsorbed on copper. We find that the adhered molecules improve the stabilization of an 'atop-bound' CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.

10.
EMBO J ; 40(4): e104729, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33349972

RESUMEN

The regulatory circuitry underlying embryonic stem (ES) cell self-renewal is well defined, but how this circuitry is disintegrated to enable lineage specification is unclear. RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and preliminary data suggest that they might regulate ES cell fate. By combining bioinformatic analyses with functional screening, we identified seven RBPs played important roles for the exit from pluripotency of ES cells. We characterized hnRNPLL, which mainly functions as a global regulator of alternative splicing in ES cells. Specifically, hnRNPLL promotes multiple ES cell-preferred exon skipping events during the onset of ES cell differentiation. hnRNPLL depletion thus leads to sustained expression of ES cell-preferred isoforms, resulting in a differentiation deficiency that causes developmental defects and growth impairment in hnRNPLL-KO mice. In particular, hnRNPLL-mediated alternative splicing of two transcription factors, Bptf and Tbx3, is important for pluripotency exit. These data uncover the critical role of RBPs in pluripotency exit and suggest the application of targeting RBPs in controlling ES cell fate.


Asunto(s)
Empalme Alternativo , Antígenos Nucleares/metabolismo , Diferenciación Celular , Células Madre Embrionarias/citología , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Proteínas del Tejido Nervioso/metabolismo , Células Madre Pluripotentes/citología , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Animales , Antígenos Nucleares/genética , Células Madre Embrionarias/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Células Madre Pluripotentes/metabolismo , Isoformas de Proteínas , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética
11.
J Virol ; 98(2): e0203523, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38299844

RESUMEN

Bovine viral diarrhea virus (BVDV) is prevalent worldwide and causes significant economic losses. Gut microbiota is a large microbial community and has a variety of biological functions. However, whether there is a correlation between gut microbiota and BVDV infection and what kind of relation between them have not been reported. Here, we found that gut microbiota composition changed in normal mice after infecting with BVDV, but mainly the low abundance microbe was affected. Interestingly, BVDV infection significantly reduced the diversity of gut microbiota and changed its composition in gut microbiota-dysbiosis mice. Furthermore, compared with normal mice of BVDV infection, there were more viral loads in the duodenum, jejunum, spleen, and liver of the gut microbiota-dysbiosis mice. However, feces microbiota transplantation (FMT) reversed these effects. The data above indicated that the dysbiosis of gut microbiota was a key factor in the high infection rate of BVDV. It is found that the IFN-I signal was involved by investigating the underlying mechanisms. The inhibition of the proliferation and increase in the apoptosis of peripheral blood lymphocytes (PBL) were also observed. However, FMT treatment reversed these changes by regulating PI3K/Akt, ERK, and Caspase-9/Caspase-3 pathways. Furthermore, the involvement of butyrate in the pathogenesis of BVDV was also further confirmed. Our results showed for the first time that gut microbiota acts as a key endogenous defense mechanism against BVDV infection; moreover, targeting regulation of gut microbiota structure and abundance may serve as a new strategy to prevent and control the disease.IMPORTANCEWhether the high infection rate of BVDV is related to gut microbiota has not been reported. In addition, most studies on BVDV focus on in vitro experiments, which limits the study of its prevention and control strategy and its pathogenic mechanism. In this study, we successfully confirmed the causal relationship between gut microbiota and BVDV infection as well as the potential molecular mechanism based on a mouse model of BVDV infection and a mouse model of gut microbiota dysbiosis. Meanwhile, a mouse model which is more susceptible to BVDV provided in this study lays an important foundation for further research on prevention and control strategy of BVDV and its pathogenesis. In addition, the antiviral effect of butyrate, the metabolites of butyrate-producing bacteria, has been further revealed. Overall, our findings provide a promising prevention and control strategy to treat this infectious disease which is distributed worldwide.


Asunto(s)
Diarrea Mucosa Bovina Viral , Virus de la Diarrea Viral Bovina , Microbioma Gastrointestinal , Animales , Bovinos , Ratones , Diarrea Mucosa Bovina Viral/complicaciones , Diarrea Mucosa Bovina Viral/microbiología , Diarrea Mucosa Bovina Viral/terapia , Diarrea Mucosa Bovina Viral/virología , Butiratos/metabolismo , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Diarrea , Virus de la Diarrea Viral Bovina/patogenicidad , Virus de la Diarrea Viral Bovina/fisiología , Disbiosis/complicaciones , Disbiosis/microbiología , Disbiosis/virología , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Trasplante de Microbiota Fecal , Interferón Tipo I/inmunología , Interferón Tipo I/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Modelos Animales de Enfermedad
12.
Plant Physiol ; 194(3): 1906-1922, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37987562

RESUMEN

Salinity is a severe abiotic stress that limits plant survival, growth, and development. 14-3-3 proteins are phosphopeptide-binding proteins that are involved in numerous signaling pathways, such as metabolism, development, and stress responses. However, their roles in salt tolerance are unclear in woody plants. Here, we characterized an apple (Malus domestica) 14-3-3 gene, GENERAL REGULATORY FACTOR 8 (MdGRF8), the product of which promotes salinity tolerance. MdGRF8 overexpression improved salt tolerance in apple plants, whereas MdGRF8-RNA interference (RNAi) weakened it. Yeast 2-hybrid, bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays revealed that MdGRF8 interacts with the transcription factor MdWRKY18. As with MdGRF8, overexpressing MdWRKY18 enhanced salt tolerance in apple plants, whereas silencing MdWRKY18 had the opposite effect. We also determined that MdWRKY18 binds to the promoters of the salt-related genes SALT OVERLY SENSITIVE 2 (MdSOS2) and MdSOS3. Moreover, we showed that the 14-3-3 protein MdGRF8 binds to the phosphorylated form of MdWRKY18, enhancing its stability and transcriptional activation activity. Our findings reveal a regulatory mechanism by the MdGRF8-MdWRKY18 module for promoting the salinity stress response in apple.


Asunto(s)
Malus , Tolerancia a la Sal , Tolerancia a la Sal/genética , Malus/metabolismo , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
13.
FASEB J ; 38(13): e23806, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38970404

RESUMEN

Atherosclerosis refers to a disease characterized by the formation of lipid plaque deposits within arterial walls, leading to reduced blood flow or blockage of blood outflow. The process of endothelial injury induced by oxidized low-density lipoprotein (ox-LDL) is considered the initial stage of atherosclerosis. Ferroptosis is a form of iron-dependent, non-apoptotic cell death, and current research suggests its association with coronary artery disease (CAD). In this study, we observed a correlation between reduced expression of SREBP-1 and the occurrence of stable CAD. Additionally, during the process of endothelial injury induced by ox-LDL, we also noted decreased expression of the SREBP-1/SCD1/FADS2 and involvement in the ferroptosis process. Mechanistically, ox-LDL induced endothelial injury by inhibiting the lipid biosynthesis process mediated by the SREBP-1/SCD1/FADS2, thereby inducing lipid peroxidation and ferroptosis. On the contrary, overexpression of SREBP-1 or supplementation with monounsaturated fatty acids counteracted iron accumulation, mitochondrial damage, and lipid peroxidation-induced ferroptosis, thereby improving endothelial injury. Our study indicated that the decreased expression of peripheral blood SREBP-1 mRNA is an independent risk factor for stable CAD. Furthermore, in endothelial cells, the lipid biosynthesis process mediated by SREBP-1 could ameliorate endothelial injury by resisting ferroptosis. The study has been registered with the Chinese Clinical Trial Registry, which serves as a primary registry in the World Health Organization International Clinical Trials Registry Platform (ChiCTR2300074315, August 3rd, 2023).


Asunto(s)
Ferroptosis , Lipogénesis , Lipoproteínas LDL , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Humanos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Masculino , Lipoproteínas LDL/metabolismo , Femenino , Peroxidación de Lípido , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Persona de Mediana Edad , Células Endoteliales/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Anciano
14.
J Immunol ; 210(1): 72-81, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36426999

RESUMEN

Fish possess a powerful IFN system to defend against aquatic virus infections. Nevertheless, spring viremia of carp virus (SVCV) causes large-scale mortality in common carp and significant economic losses to aquaculture. Therefore, it is necessary to investigate the strategies used by SVCV to escape the IFN response. In this study, we show that the SVCV nucleoprotein (N protein) negatively regulates cellular IFN production by degrading stimulator of IFN genes (STING) via the autophagy-lysosome-dependent pathway. First, overexpression of N protein inhibited the IFN promoter activation induced by polyinosinic-polycytidylic acid and STING. Second, the N protein associated with STING and experiments using a dominant-negative STING mutant demonstrated that the N-terminal transmembrane domains of STING were indispensable for this interaction. Then, the N protein degraded STING in a dose-dependent and autophagy-lysosome-dependent manner. Intriguingly, in the absence of STING, individual N proteins could not elicit host autophagic flow. Furthermore, the autophagy factor Beclin1 was found to interact with the N protein to attenuate N protein-mediated STING degradation after beclin1 knockdown. Finally, the N protein remarkably weakened STING-enhanced cellular antiviral responses. These findings reveal that SVCV uses the host autophagic process to achieve immune escape, thus broadening our understanding of aquatic virus pathogenesis.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Proteínas de la Nucleocápside , Viremia , Beclina-1 , Rhabdoviridae/fisiología , Lisosomas , Autofagia
15.
J Immunol ; 210(9): 1338-1350, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36971697

RESUMEN

African swine fever is a fatal infectious disease caused by African swine fever virus (ASFV). The high mortality caused by this infectious disease is a significant challenge to the swine industry worldwide. ASFV virulence is related to its ability to antagonize IFN response, yet the mechanism of antagonism is not understood. Recently, a less virulent recombinant virus has emerged that has a EP402R gene deletion within the parental ASFV HLJ/18 (ASFV-ΔEP402R) strain. EP402R gene encodes CD2v. Hence we hypothesized that ASFV uses CD2v protein to evade type I IFN-mediated innate immune response. We found that ASFV-ΔEP402R infection induced higher type I IFN response and increased the expression of IFN-stimulated genes in porcine alveolar macrophages when compared with parental ASFV HLJ/18. Consistent with these results, CD2v overexpression inhibited type I IFN production and IFN-stimulated gene expression. Mechanistically, CD2v, by interacting with the transmembrane domain of stimulator of IFN genes (STING), prevented the transport of STING to the Golgi apparatus, and thereby inhibited the cGMP-AMP synthase-STING signaling pathway. Furthermore, ASFV CD2v disrupted IFNAR1-TYK2 and IFNAR2-JAK1 interactions, and thereby inhibited JAK-STAT activation by IFN-α. In vivo, specific pathogen-free pigs infected with the mutant ASFV-ΔEP402R strain survived better than animals infected with the parental ASFV HLJ/18 strain. Consistent with this finding, IFN-ß protein levels in the peripheral blood of ASFV-ΔEP402R-challenged pigs were significantly higher than in the blood of ASFV HLJ/18-challenged pigs. Taken together, our findings suggest a molecular mechanism in which CD2v inhibits cGMP-AMP synthase-STING and IFN signaling pathways to evade the innate immune response rendering ASFV infection fatal in pigs.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Interferón Tipo I , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Proteínas Virales , Transducción de Señal , Expresión Génica , Interferón Tipo I/metabolismo
16.
Mol Cell Proteomics ; 22(4): 100525, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871861

RESUMEN

Energy homeostasis of mammals during cold exposure involves complicated neural regulation and is affected by gut microbiota. However, the regulatory mechanism remains unclear partially due to a lack of comprehensive knowledge of the signaling molecules involved. Herein, we performed region-resolvable quantitative profiling of the brain peptidome using cold-exposed mouse models and interrogated the interaction between gut microbes and brain peptides in response to cold. Region-specific alterations in the brain peptidome were observed during chronic cold exposure and were correlated with gut microbiome composition. Several proSAAS-derived peptides exhibited a positive correlation with Lactobacillus. The hypothalamus-pituitary axis exhibited a sensitive response to cold exposure. We obtained a candidate pool of bioactive peptides that potentially participate in the regulation of cold-induced energy homeostasis. Intervention with cold-adapted microbiota in mice decreased the abundance of hypothalamic neurokinin B and subsequently contributed to shifting the fuel source for energy consumption from lipids to glucose. Collectively, this study demonstrated that gut microbes modulate brain peptides contributing to energy metabolism, providing a data resource for understanding the regulatory mechanism of energy homeostasis upon cold exposure.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Encéfalo/metabolismo , Metabolismo Energético , Homeostasis , Mamíferos
17.
Nucleic Acids Res ; 51(3): 1443-1457, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36651297

RESUMEN

Testicular nuclear receptor 4 (TR4) modulates the transcriptional activation of genes and plays important roles in many diseases. The regulation of TR4 on target genes involves direct interactions with DNA molecules via the DNA-binding domain (DBD) and recruitment of coregulators by the ligand-binding domain (LBD). However, their regulatory mechanisms are unclear. Here, we report high-resolution crystal structures of TR4DBD, TR4DBD-DNA complexes and the TR4LBD-JAZF1 complex. For DNA recognition, multiple factors come into play, and a specific mutual selectivity between TR4 and target genes is found. The coactivators SRC-1 and CREBBP can bind at the interface of TR4 originally occupied by the TR4 activation function region 2 (AF-2); however, JAZF1 suppresses the binding through a novel mechanism. JAZF1 binds to an unidentified surface of TR4 and stabilizes an α13 helix never reported in the nuclear receptor family. Moreover, the cancer-associated mutations affect the interactions and the transcriptional activation of TR4 in vitro and in vivo, respectively. Overall, our results highlight the crucial role of DNA recognition and a novel mechanism of how JAZF1 reinforces the autorepressed conformation and influences the transcriptional activation of TR4, laying out important structural bases for drug design for a variety of diseases, including diabetes and cancers.


Asunto(s)
Proteínas Co-Represoras , Regulación de la Expresión Génica , Receptores de Esteroides , Humanos , Proteínas Portadoras/genética , Proteínas Co-Represoras/metabolismo , ADN , Proteínas de Unión al ADN/genética , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Activación Transcripcional
18.
Nano Lett ; 24(5): 1579-1586, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38284987

RESUMEN

Engineering room-temperature strong coupling of few-exciton in transition-metal dichalcogenides (TMDCs) with plasmons promises to construct compact and high-performance quantum optical devices. But it remains unimplemented due to their in-plane excitons. Here, we demonstrate the strong coupling of few-exciton within 10 in monolayer WS2 with the plasmonic mode with a large tangential component of the electric field tightly trapped around the sharp corners of an Au@Ag nanocuboid, the fewest number of excitons observed in the TMDC family so far. Furthermore, we for the first time report a significant deviation with a relative difference of up to 100.6% between the spectrum and eigenlevel splitting dispersions, which increases with decreasing coupling strength. It is also shown that the coupling strength obtained by the conventional concept of both being equal to the measured spectrum splitting is markedly overestimated. Our work enriches the understanding of strong light-matter interactions at room temperature.

19.
Nano Lett ; 24(23): 6997-7003, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38721805

RESUMEN

We report that constructed Au nanoclusters (NCs) can afford amazing white emission synergistically dictated by the Au(0)-dominated core-state fluorescence and Au(I)-governed surface-state phosphorescence, with record-high absolute quantum yields of 42.1% and 53.6% in the aqueous solution and powder state, respectively. Moreover, the dynamic color tuning is achieved in a wide warm-to-cold white-light range (with the correlated color temperature varied from 3426 to 24 973 K) by elaborately manipulating the ratio of Au(0) to Au(I) species and thus the electron transfer rate from staple motif to metal kernel. This study not only exemplifies the successful integration of multiple luminescent centers into metal NCs to accomplish efficient white-light emission but also inspires a feasible pathway toward customizing the optical properties of metal NCs by regulating electron transfer kinetics.

20.
Nano Lett ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568013

RESUMEN

Metalenses are typically designed for a fixed focal length, restricting their functionality to static scenarios. Various methods have been introduced to achieve the zoom function in metalenses. These methods, however, have a very limited zoom range, or they require additional lenses to achieve direct imaging. Here, we demonstrate a zoom metalens based on axial movement that performs both the imaging and the zoom function. The key innovation is the use of a polynomial phase profile that mimics an aspheric lens, which allows an extended depth of focus, enabling a large zoom range. Experimental results show that this focal length variation, combined with the extended depth of focus, translates into an impressive zoom range of 11.9× while maintaining good imaging quality. We see applications for such a zoom metalens in surveillance cameras of drones or microrobots to reduce their weight and volume, thus enabling more flexible application scenarios.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda