Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Molecules ; 26(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451119

RESUMEN

Subcritical water treatment has received considerable attention due to its cost effectiveness and environmentally friendly properties. In this investigation, Chinese quince fruits were submitted to subcritical water treatment (130, 150, and 170 °C), and the influence of treatments on the structure of milled wood lignin (MWL) was evaluated. Structural properties of these lignin samples (UL, L130, L150, and L170) were investigated by high-performance anion exchange chromatography (HPAEC), FT-IR, gel permeation chromatography (GPC), TGA, pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), 2D-Heteronculear Single Quantum Coherence (HSQC) -NMR, and 31P-NMR. The carbohydrate analysis showed that xylose in the samples increased significantly with higher temperature, and according to molecular weight and thermal analysis, the MWLs of the pretreated residues have higher thermal stability with increased molecular weight. The spectra of 2D-NMR and 31P-NMR demonstrated that the chemical linkages in the MWLs were mainly ß-O-4' ether bonds, ß-5' and ß-ß', and the units were principally G- S- H- type with small amounts of ferulic acids; these results are consistent with the results of Py-GC/MS analysis. It is believed that understanding the structural changes in MWL caused by subcritical water treatment will contribute to understanding the mechanism of subcritical water extraction, which in turn will provide a theoretical basis for developing the technology of subcritical water extraction.


Asunto(s)
Frutas/química , Lignina/química , Rosaceae/química , Purificación del Agua , Madera/química , China , Estructura Molecular , Tamaño de la Partícula
2.
J Sci Food Agric ; 100(4): 1524-1531, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31769029

RESUMEN

BACKGROUND: In recent years, cold-pressed oils have become more and more popular with consumers. However, their oxidative stability is low. Improving the oxidative stability of cold-pressed oils will increase their shelf life. Maillard reaction products (MRPs) have been shown to promote the oxidative stability of lipids. In this study, products from the Maillard reaction of reducing sugars and sesame enzymatically hydrolyzed protein (SEHP) were added to cold-pressed sesame oils to improve their oxidative stability. RESULTS: Three types of MRPs from reducing sugars (xylose, fructose, and glucose) and SEHP were prepared. Xylose-SEHP MRPs prepared under optimum conditions had the highest antioxidant activities among the three. The optimum conditions for xylose-SEHP were as follows: reaction temperature, 130 °C; reaction time, 180 min; pH, 6.5; and sugar/protein ratio, 10:1. The addition of xylose-SEHP MRPs at a level of 20 g kg-1 could significantly improve the oxidative stability of cold-pressed sesame oil. Besides, the addition of MRPs reduced the loss of tocopherol. The interaction of MRPs with endogenous antioxidants in the sesame oil (sesamol and tocopherol) was proved by comparison with lard. There was a synergistic increase in antioxidant activity for the combination of MRPs and sesamol and the combination of MRPs and tocopherol. CONCLUSIONS: The results provide evidence that adding certain MRPs can improve the oxidative stability of cold-pressed sesame oil. © 2019 Society of Chemical Industry.


Asunto(s)
Manipulación de Alimentos/métodos , Fructosa/química , Glucosa/química , Productos Finales de Glicación Avanzada/química , Proteínas de Plantas/química , Aceite de Sésamo/química , Sesamum/química , Xilosa/química , Aditivos Alimentarios/química , Reacción de Maillard , Oxidación-Reducción
3.
Molecules ; 22(4)2017 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-28346341

RESUMEN

Chinese quince seed (CQS) is an underutilized oil source and a potential source of unsaturated fatty acids and α-tocopherol-rich oil. Subcritical fluid (SCF) extraction is executed at lower pressures and temperatures than the pressures and temperatures used in supercritical fluid extraction. However, no studies on the SCF extraction of CQS oil are reported. Therefore, the objective of this study was to evaluate the use of SCF for the extraction of CQS oil and to compare the use of SCF with the classical Soxhlet (CS) and supercritical CO2 (SC-CO2) extraction methods. Response surface methodology (RSM) was used to investigate the extraction conditions: temperature (45-65 °C), time (30-50 min), and solvent/solid ratio (5-15 mL/g). The optimization results showed that the highest yield (27.78%) was obtained at 56.18 °C, 40.20 min, and 12.57 mL/g. The oil extracted by SCF had a higher unsaturated fatty acid content (86.37%-86.75%), higher α-tocopherol content (576.0-847.6 mg/kg), lower acid value (3.97 mg/g), and lower peroxide value (0.02 meq O2/kg) than extractions using CS and SC-CO2 methods. The SCF-defatted meal of oilseed exhibited the highest nitrogen solubility index (49.64%) and protein dispersibility index (50.80%), demonstrating that SCF extraction was a promising and efficient technique as an alternative to CS and SC-CO2 methods, as very mild operating conditions and an eco-friendly solvent can be used in the process with maximum preservation of the quality of the meal.


Asunto(s)
Aceites de Plantas/química , Rosaceae/química , Semillas/química , Presión Atmosférica , Ácidos Grasos Insaturados/análisis , Temperatura , alfa-Tocoferol/análisis
4.
J Sci Food Agric ; 97(6): 1894-1903, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27528006

RESUMEN

BACKGROUND: Red pepper seeds account for 450-500 g kg-1 of the total pepper weight and are often discarded as waste. In this study, process optimization and characterization of fragrant oil from roasted red pepper seed extracted by subcritical butane extraction were carried out. RESULTS: The optimal conditions of extraction were a temperature of 74.61 °C, a time of 68.65 min and a liquid/solid ratio of 30.24:1. The oil had a refractive index (25 °C) of 1.471, a relative density of 0.900, an acid value of 1.421 mg g-1 oil, an iodine value of 127.035 g per 100 g, a saponification value of 184.060 mg KOH g-1 , an unsaponifiable matter content of 12.400 g kg-1 , a peroxide value of 2.465 meq. O2 kg-1 and a viscosity of 52.094 cP. The main fatty acids in the oil were linoleic acid (72.95%) followed by palmitic acid (11.43%) and oleic acid (10.00%). The oil showed desirable thermal and oxidative stability. A total of 19 volatile compounds, mostly aldehydes and alkenes, were identified from the oil. CONCLUSION: The results indicated that the method is appropriate for the preparation of fragrant red pepper seed oil, and the oil is suitable for used as edible oil. © 2016 Society of Chemical Industry.


Asunto(s)
Capsicum/química , Fraccionamiento Químico/métodos , Aceites de Plantas/química , Aceites de Plantas/aislamiento & purificación , Semillas/química , Butanos/química , Fraccionamiento Químico/instrumentación , Oxidación-Reducción
5.
Food Chem ; 444: 138642, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38325088

RESUMEN

Chinese quince (Chaenomeles sinensis) fruit is an underutilized resource, rich in proanthocyanidins with antioxidant ability but poor lipid solubility. In this study, a novel modified oligomeric proanthocyanidin (MOPA) was prepared, which exhibited favorable lipid solubility (354.52 mg/100 g). It showed higher radical scavenging abilities than commercial antioxidant-BHA (butylated hydroxyanisole), both at 0.4-0.5 mg/mL. The addition of MOPA (0.04 %wt.) significantly increased the oxidative stability index of the soybean oil from 5.52 to 8.03 h, which was slightly lower than that of BHA (8.35 h). Analysis of the physicochemical properties and composition of oil during deep-frying showed that MOPA demonstrated significant antioxidant effects and effectively restricted the oil oxidation. This inhibition also delays the formation of heterocyclic amines (HAs) in fried food, thereby reducing the migration of HAs from food to deep-frying oil. Therefore, MOPA is a promising novel liposoluble antioxidant for protecting the quality of deep-frying oil.


Asunto(s)
Fenilacetatos , Proantocianidinas , Rosaceae , Antioxidantes/química , Aceite de Soja/química , China
6.
Food Chem ; 457: 140079, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38901343

RESUMEN

The unknown effect of sesame lignans on aroma formation in sesame oil via the Maillard reaction (MR) and lipid oxidation was investigated. Sesamin, sesamolin, or sesamol was added to 3 models: lysine+glucose (MR), cold-pressed sesame oil (SO), and MR + SO, and were heated at 120 °C for 60 min. All three lignans suppressed SO oxidation while increasing DPPH scavenging ability (p < 0.05). Lignans increased depletions of lysine and glucose and MR browning (p < 0.05). Lignans reduced most aroma-active pyrazines, aldehydes, ketones, alcohols, and esters (p < 0.05). Sesamol and sesamolin increased perceptions of the preferable aromas of nutty, roasted sesame, and popcorn while reducing the undesirable green and rancid aromas (p < 0.05). Sesamol demonstrated a stronger effect on lipid oxidation, MR browning, aroma formation, and sensory perception than sesamin and sesamolin. This study suggests that sesame lignans can modulate aroma formation and sensory perception of sesame oil by interacting with the MR and lipid oxidation pathways.

7.
J Food Sci ; 89(6): 3759-3775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38706376

RESUMEN

Heterocyclic amines (HCAs) have potential carcinogenic and mutagenic activity and are generated in cooked protein-rich foods. Adding proanthocyanidins (PAs) to these foods before frying is an effective way to reduce HCAs. In this study, polymeric PAs (PPA) and ultrasound-assisted acid-catalyzed/catechin nucleophilic depolymerized PAs (UAPA, a type of oligomeric PA) were prepared from Chinese quince fruits (CQF). Different levels of PPA and UAPA (0.05%, 0.1%, and 0.15%) were added to chicken meatballs and tofu; then these foods were fried, and the content of HCAs in them after frying was investigated. The results showed that PPA and, particularly, UAPA significantly inhibited the formation of HCAs in fried meatballs and tofu, and this inhibition was dose-dependent. The inhibition of HCAs by both PPA and UAPA was stronger in the chicken meatballs than in fried tofu. The level of total HCAs was significantly reduced by 57.84% (from 11.93 to 5.03 ng/g) after treatment of meatballs with 0.15% UAPA, with inhibition rates of 78.94%, 50.37%, and 17.81% for norharman, harman, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), respectively. Of note, there was a negative correlation between water, lipid, protein, creatine, and glucose content and HCA content in the crust, interior, and whole (crust-plus-interior) measurements of all fried samples. Interestingly, PPA and UAPA were found more effective in inhibiting HCAs in the exterior crust than in the interior of the fried chicken meatballs. These results provide evidence that further studies on the reduction of the formation of harmful HCAs in fried foods by adding CQF PAs could be valuable to the fried food industry. PRACTICAL APPLICATION: Chinese quince proanthocyanidins treatments significantly inhibited the generation of heterocyclic amines (HCAs) in chicken meatballs and tofu when deep-fried. These results suggest that Chinese quince proanthocyanidins can be used as natural food additive for reducing HCAs in fried foods, laying the foundation for using Chinese quince fruit proanthocyanidins for HCA inhibition in the food industry.


Asunto(s)
Aminas , Pollos , Culinaria , Proantocianidinas , Proantocianidinas/farmacología , Proantocianidinas/análisis , Animales , Culinaria/métodos , Aminas/química , Frutas/química , Productos de la Carne/análisis , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/análisis , Calor , Pueblos del Este de Asia
8.
Food Res Int ; 186: 114397, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729739

RESUMEN

The formation mechanism behind the sophisticated aromas of sesame oil (SO) has not been elucidated. The interaction effects of the Maillard reaction (MR) and lipid oxidation on the aroma formation of fragrant sesame oil were investigated in model reaction systems made of l-lysine (Lys) and d-glucose (Glc) with or without fresh SO (FSO) or oxidized SO (OSO). The addition of OSO to the Lys-Glc model increased the MR browning at 294 nm and 420 nm and enhanced the DPPH radical scavenging activity greater than the addition of FSO (p < 0.05). The presence of lysine and glucose inhibited the oxidation of sesame oil, reduced the loss of γ-tocopherol, and facilitated the formation of sesamol (p < 0.05). The Maillard-lipid interaction led to the increased concentrations of some of the alkylpyrazines, alkylfurans, and MR-derived ketones and acids (p < 0.05) while reducing the concentrations of other pyrazines, lipid-derived furans, aliphatic aldehydes, ketones, alcohols, and acids (p < 0.05). The addition of FSO to the MR model enhanced the characteristic roasted, nutty, sweet, and fatty aromas in sesame oil (p < 0.05), while excessive lipid oxidation (OSO) brought about an unpleasant oxidized odor and reduced the characteristic aromas. This study helps to understand the sophisticated aroma formation mechanism in sesame oil and provides scientific instruction for precise flavor control in the production of sesame oil.


Asunto(s)
Glucosa , Lisina , Reacción de Maillard , Odorantes , Oxidación-Reducción , Aceite de Sésamo , Aceite de Sésamo/química , Glucosa/química , Odorantes/análisis , Lisina/química , Fenoles/química , Benzodioxoles
9.
Carbohydr Polym ; 328: 121711, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220344

RESUMEN

This study was to explore the internal reasons for the changes in oil absorption performance of tigernut starch (TS) by revealing the high-temperature induced variations of structural and functional properties of TS. The results showed that as the temperature increased from 80 °C to 140 °C, the degree of starch gelatinization increased, while the proportion of double helix structures, the total proportion of B1 and B2 chains, the relative crystallinity and the molecular weight decreased, accompanied by the fragmentation and swelling of TS granules. The oxidation of tigernut oil (TNO) led to a decrease in oil density and an increase in total polar component content. These phenomena could result in an increase of oil absorption capacity of TS and starch-lipid complex index. With further increase in temperature from 170 °C to 200 °C, the disruption of the crystalline structure and chain structure increased, resulting in the melting and disintegration of TS granules. This caused a decrease in the starch-oil contact area and capillary absorption of TNO by the TS granules. The results will contribute to revealing the effect of high-temperature induced changes in the structural and functional properties of TS on its oil absorption properties.

10.
Food Chem X ; 21: 101087, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38268846

RESUMEN

This study developed a novel and green method to produce fragrant sesame oil using microwaves and subcritical extraction (SBE). Sesame seeds were microwaved at 540 W for 0-9 min before subcritical propane extraction at 40 °C and 0.5 MPa. SBE caused less deformation to the cellular microstructure of sesame cotyledons while dramatically improving oil yield (96.7-97.1 %) compared to screw processing (SP) (53.1-58.6 %). SBE improved extraction rates for γ-tocopherol (381.1-454.9 µg/g) and sesame lignans (917.9-970.4 mg/100 g) in sesame oil compared to SP (360.1-443.8 µg/g and 872.8-916.8 mg/100 g, respectively). Microwaves generated aroma-active heterocyclics and phenolics faster than hot-air roasting in sesame oil with a better sensory profile. SBE had a higher extraction rate for aroma-active terpenes, alcohols, and esters while reducing the concentrations of carcinogenic PAHs and HCAs in sesame oil. The novel combination process of microwaves and subcritical extraction is promising in producing fragrant sesame oil with superior qualities.

11.
J Oleo Sci ; 73(2): 147-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38311405

RESUMEN

Tigernut has been recognized as a promising resource for edible oil and starch. However, the research on the quality characteristics of tigernut from different regions is lagging behind, which limits the application of tigernut in food industry. Tigernut tubers were obtained from six major growing regions in China, and the physicochemical properties of their main components, oil and starch, were characterized. Tigernut tubers from Baoshan contained the most oil (30.12%), which contained the most ß-carotene (130.4 µg/100 g oil) due to high average annual temperature. Gas chromatography analysis and fingerprint analysis results indicated that tigernut oil (TNO) consists of seven fatty acids, of which oleic acid is the major component. Changchun TNO contained the least total tocopherols (6.04 mg/100 g oil) due to low average annual temperature. Tigernut tubers from Chifeng (CF) contained the most starch (34.85%) due to the large diurnal temperature range. Xingtai starch contained the most amylose (28.4%). Shijiazhuang starch showed the highest crystallinity (19.5%). Anyang starch had the highest pasting temperature (76.0°C). CF starch demonstrated superior freeze-thaw stability (syneresis: 50%) due to low mean annual precipitation. The results could be further applied to support tigernut industries and relevant researchers that looks for geographical origin discrimination and improvements on tigernut quality, with unique physicochemical and technological properties.


Asunto(s)
Cyperus , Almidón , Almidón/química , Cyperus/química , Aceites de Plantas/química , Verduras , China
12.
Food Chem ; 456: 140003, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38876064

RESUMEN

Heterocyclic aromatic amines (HAAs) and advanced glycation end products (AGEs) are hazardous substances produced when food is heated. In this study, the ability of plasma-activated water (PAW) to simultaneously mitigate production of HAAs and AGEs in roasted beef patties was investigated. Assays of free radicals, lipid peroxidation, and active carbonyls were used to analyze the mechanisms. PAW treatment decreased the contents of free HAAs, free AGEs, bound HAAs, and bound AGEs to 12.65 ng/g, 0.10 µg/g, 297.74 ng/g, and 4.32 µg/g, with the inhibition rates of 23.88%, 23.08%, 11.02%, and 8.47%, respectively. PAW treatment decreased HAAs and AGEs and mitigated their increase during storage. The decrease of HAAs and AGEs in PAW-treated samples was correlated with the enhancement of antioxidant capacity. The increase of free radical scavenging ability by PAW treatment led to the decrease of lipid peroxidation and the decrease of active carbonyls, HAAs, and AGEs in meat products.

13.
J Food Sci ; 89(6): 3494-3505, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38700357

RESUMEN

The abilities of Chinese quince free proanthocyanidins (FP) and bound proanthocyanidins (BP) at different levels (0.1%, 0.15%, and 0.3%) to mitigate heterocyclic aromatic amine (HAA) formation in fried chicken patties were investigated for the first time and compared with vitamin C (Vc). FP and BP reduced HAAs in a dose-dependent manner. Significantly, high concentrations of FP (0.3%) resulted in a reduction of PhIP, harman, and norharman levels by 59.84%, 22.91%, and 38.21%, respectively, in chicken patties. The addition of proanthocyanidins significantly (p < 0.05) reduced the weight loss of fried chicken patties. Furthermore, a positive correlation was observed among pH, weight loss, and total HAA formation in all three groups (FP, BP, and Vc). Multivariate analysis showed that FP had a more pronounced effect than BP from the perspective of enhancing the quality of fried chicken patties and reducing the formation of HAAs. These results indicate that proanthocyanidins, both BP and FP, but especially FP, from Chinese quince can inhibit the formation of carcinogenic HAAs when added to protein-rich foods that are subsequently fried.


Asunto(s)
Aminas , Pollos , Culinaria , Proantocianidinas , Proantocianidinas/análisis , Proantocianidinas/farmacología , Animales , Aminas/química , Culinaria/métodos , Compuestos Heterocíclicos/química , Rosaceae/química , Pueblos del Este de Asia
14.
Int J Biol Macromol ; 266(Pt 1): 131208, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552695

RESUMEN

In this study, three activators and two activation methods were employed to activate sesame lignin-based biochar. The biochar samples were comprehensively characterized, their abilities to adsorb benzo[a]pyrene (BaP) from sesame oil were assessed, and the mechanism was analyzed. The results showed that the biochar obtained by one-step activation was more effective in removing BaP from sesame oil than the biochar produced by two-step activation. Among them, the biochar generated by one-step activation with ZnCl2 as the activator had the largest specific surface area (1068.8776 m3/g), and the richest mesoporous structure (0.7891 m3/g); it removed 90.53 % of BaP from sesame oil. BaP was mainly adsorbed by the mesopores of biochar. Mechanistically, pore-filling, π-π conjugations, hydrogen bonding, and n-π interactions were involved. The adsorption was spontaneous and heat-absorbing. In conclusion, the preparation of sesame lignin biochar using one-step activation with ZnCl2 as the activator was found to be the best for removing BaP from sesame oil. This biochar may be an economical adsorbent for the industrial removal of BaP from sesame oil.


Asunto(s)
Benzo(a)pireno , Carbón Orgánico , Lignina , Aceite de Sésamo , Sesamum , Carbón Orgánico/química , Lignina/química , Benzo(a)pireno/química , Adsorción , Aceite de Sésamo/química , Sesamum/química , Compuestos de Zinc/química , Cloruros/química
15.
Int J Biol Macromol ; 269(Pt 2): 132216, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729483

RESUMEN

Agricultural by-products of sesame are promising bioresources in food processing. This study extracted lignin from the by-products of sesame oil production, namely, the capsules and straw of black and white sesame. Using acid, alkali, and ethanol methods, 12 distinct lignins were obtained to prepare biochar, aiming to investigate both the structural characteristics of lignin-based biochar (LBB) and its ability to remove benzo[a]pyrene (BaP) from sesame oil. The results showed that white sesame straw was the most suitable raw material for preparing biochar. In terms of the preparation method, acid-extracted lignin biochar was more effective in removing BaP than alkaline or ethanol methods. Notably, WS-1LB (white sesame straw acid-extracted lignin biochar) exhibited the highest BaP adsorption efficiency (91.44 %) and the maximum specific surface area (1065.8187 m2/g), characterized by porous structures. The pseudo 2nd and Freundlich models were found to be the best fit for the adsorption kinetics and isotherms of BaP on LBB, respectively, suggesting that a multilayer adsorption process was dominant. The high adsorption of LBB mainly resulted from pore filling. This study provides an economical and highly efficient biochar adsorbent for the removal of BaP in oil.


Asunto(s)
Carbón Orgánico , Lignina , Aceite de Sésamo , Lignina/química , Carbón Orgánico/química , Adsorción , Aceite de Sésamo/química , Benzo(a)pireno/química , Cinética
16.
Int J Biol Macromol ; 253(Pt 2): 126667, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37660846

RESUMEN

Surface modification of nanostructured lipid carriers (NLCs) can be an effective way to improve their oral delivery for active ingredients. In this study, four type of guar gum series modified NLCs for the delivery of phytosterols (PS) were constructed and the effects of the polysaccharides on their structure and physicochemical properties were studied. DLS and AFM results revealed that positively charged polysaccharides could bind to PS-NLCs through electrostatic attraction and made the complexes finally take positive charges, while negatively charged polysaccharides were more likely to fill in the gaps of NLC systems to achieve a balance between electrostatic repulsion and intermolecular forces. Although all four polysaccharides exhibited good storage stability and controlled release of PS in simulated intestinal digestion, PS-NLCs modified with partially hydrolyzed cationic guar gum (PHCG) at medium or high concentrations exhibited better gastric stability, mucoadhesion, and cellular uptake, which had considerable significance for improving the oral bioavailability of PS. This might be related to the coating structure of PHCG-PS-NLCs confirmed by AFM, FTIR, and Raman characterization. This study provide a reference value for designing suitable PS-NLC complexes without synthetic surfactants.


Asunto(s)
Nanoestructuras , Fitosteroles , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Lípidos/química , Electricidad Estática , Galactanos , Nanoestructuras/química , Tamaño de la Partícula , Administración Oral
17.
Int J Biol Macromol ; 246: 125664, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406919

RESUMEN

Chinese quince fruit (CQF) contains abundant pectin; however, the pectin cannot be efficiently separated by conventional approaches because of strong lignin-carbohydrate complexes (LCC). In this study, to elucidate the structural characteristics of the original LCC formed by lignin and pectin in CQF, single and multiple enzymatic hydrolysis pretreatments were innovatively performed, and the resulting LCC preparations were comprehensively characterized using a series of techniques. The enzymatic hydrolysis pretreatments significantly increase the LCC yield, releasing LCC fractions with low molecular weights (Mw = 4660-8288 Da). LCC-4, isolated by pretreatment with cellulase plus xylanase, had the highest galacturonic acid content (15.5 %), followed by LCC-2 (isolated by xylanase pretreatment) of 14.0 %. In CQF, lignin develops lignin-carbohydrate (LC) bonds with pectin to form LCC, with phenyl-glycoside bond being the dominant linkage. Although the pectinase pretreatment reduced the pectin content, signals of the LC linkages in the 2D-HSQC spectra were enhanced. LCC-4 could be considered as the most representative of the original LCC in CQF due to its high pectin content and multiple LCC signals in the 2D-HSQC spectrum. The structural understanding of the original LCC in CQF will lay a foundation for designing appropriate methods for extracting pectin from CQF.


Asunto(s)
Lignina , Rosaceae , Carbohidratos/química , Frutas , Hidrólisis , Lignina/química , Rosaceae/química , China
18.
Food Chem X ; 20: 101045, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144781

RESUMEN

The unclear effects of microwaves, as a greener alternative to hot air, on sensory perception, aroma, and hazardous components of sesame oil were investigated. Microwaves (900 W, 6-10 min) created more seed porosity and cell destruction and facilitated more γ-tocopherol release in sesame oil (349.30-408.50 mg/kg) than 200 °C, 20 min hot air (304.90 mg/kg). Microwaves (6-10 min) generated more aromatic heterocyclics (42.40-125.12 mg/kg) and aldehydes (5.15-2.08 mg/kg) in sesame oil than hot air (25.59 mg/kg and 1.34 mg/kg). Microwaves (6 min) produced sesame oil with a stronger roasted sesame flavour, and weaker bitter and burnt flavour than hot air. Microwaves reduced harman (≤775.19 ng/g), norharman (≤1,069.99 ng/g), and benzo(a)pyrene (≤1.59 µg/kg) in sesame oil than hot air (1,319.85 ng/g, 1,168.40 ng/g, and 1.83 µg/kg). Appropriate microwave is a promising alternative to hot air in producing sesame oil with a better sensory profile, more bioactive, and less carcinogenic components.

19.
Int J Biol Macromol ; 238: 124046, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36933591

RESUMEN

Heterocyclic amines (HCAs) are carcinogenic and mutagenic substances produced in fried meat. Adding natural antioxidants (e.g., proanthocyanidins (PAs)) is a common method to reduce HCAs; however, the interaction between the PAs and protein can affect the inhibitory efficacy of PAs on the formation of HCAs. In this study, two PAs (F1 and F2) with different degrees of polymerization (DP) were extracted from Chinese quince fruits. These were combined with bovine serum albumin (BSA). The thermal stability, antioxidant capacity and HCAs inhibition of all four (F1, F2, F1-BSA, F2-BSA) were compared. The results showed that F1 and F2 interact with BSA to form complexes. Circular dichroism spectra indicate that complexes had fewer α-helices and more ß-sheets, ß-turns and random coils than BSA. Molecular docking studies indicated that hydrogen bonds and hydrophobic interactions are the forces holding the complexes together. The thermal stabilities of F1 and, particularly, F2 were stronger than those of F1-BSA and F2-BSA. Interestingly, F1-BSA and F2-BSA showed increased antioxidant activity with increasing temperature. F1-BSA's and F2-BSA's HCAs inhibition was stronger than F1 and F2, reaching 72.06 % and 76.3 %, respectively, for norharman. This suggests that PAs can be used as natural antioxidants for reducing the HCAs in fried foods.


Asunto(s)
Proantocianidinas , Rosaceae , Aminas/química , Antioxidantes/química , Dicroismo Circular , Frutas/metabolismo , Simulación del Acoplamiento Molecular , Proantocianidinas/farmacología , Albúmina Sérica Bovina/química , Espectrometría de Fluorescencia
20.
Foods ; 11(9)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35563949

RESUMEN

Asarinin, an isomer of sesamin, has attracted attention because it has stronger biological properties than sesamin. The research on the conversion of sesamin into asarinin is limited. In this study, solid acid catalysts were screened and applied to promote the conversion of sesamin into asarinin in sesame oil. The results showed that citric acid loaded on zeolite beta (CTAH) was the optimal catalyst for asarinin production among the prepared catalysts. Characterization showed that CTAH had the greatest pore volume, largest surface area and strongest acid content. Response surface methodology (RSM) was applied to optimize the reaction conditions for asarinin yield using CTAH. The optimal reaction conditions were as follows: temperature, 85 °C; time, 2.7 h; catalyst amount, 1.6%. The predicted and experimental values of asarinin yield were 50.79 and 51.80 mg/100 g, respectively. The peroxide value and color in sesame oil samples treated with CTAH were clearly improved. In short, CTAH is a solid acid catalyst with potential application in the industrial conversion of sesamin into asarinin and in the improvement of sesame oil.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda