Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
BMC Vet Res ; 19(1): 141, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660015

RESUMEN

BACKGROUND: Upper urinary tract stones are increasingly prevalent in pet cats and are difficult to manage. Surgical procedures to address obstructing ureteroliths have short- and long-term complications, and medical therapies (e.g., fluid diuresis and smooth muscle relaxants) are infrequently effective. Burst wave lithotripsy is a non-invasive, ultrasound-guided, handheld focused ultrasound technology to disintegrate urinary stones, which is now undergoing human clinical trials in awake unanesthetized subjects. RESULTS: In this study, we designed and performed in vitro testing of a modified burst wave lithotripsy system to noninvasively fragment stones in cats. The design accounted for differences in anatomic scale, acoustic window, skin-to-stone depth, and stone size. Prototypes were fabricated and tested in a benchtop model using 35 natural calcium oxalate monohydrate stones from cats. In an initial experiment, burst wave lithotripsy was performed using peak ultrasound pressures of 7.3 (n = 10), 8.0 (n = 5), or 8.9 MPa (n = 10) for up to 30 min. Fourteen of 25 stones fragmented to < 1 mm within the 30 min. In a second experiment, burst wave lithotripsy was performed using a second transducer and peak ultrasound pressure of 8.0 MPa (n = 10) for up to 50 min. In the second experiment, 9 of 10 stones fragmented to < 1 mm within the 50 min. Across both experiments, an average of 73-97% of stone mass could be reduced to fragments < 1 mm. A third experiment found negligible injury with in vivo exposure of kidneys and ureters in a porcine animal model. CONCLUSIONS: These data support further evaluation of burst wave lithotripsy as a noninvasive intervention for obstructing ureteroliths in cats.


Asunto(s)
Enfermedades de los Gatos , Litotricia , Enfermedades de los Porcinos , Urolitiasis , Gatos , Humanos , Animales , Porcinos , Litotricia/veterinaria , Riñón , Urolitiasis/veterinaria , Oxalato de Calcio , Modelos Animales , Enfermedades de los Gatos/diagnóstico por imagen , Enfermedades de los Gatos/terapia
2.
Proc Natl Acad Sci U S A ; 117(29): 16848-16855, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32631991

RESUMEN

In certain medical applications, transmitting an ultrasound beam through the skin to manipulate a solid object within the human body would be beneficial. Such applications include, for example, controlling an ingestible camera or expelling a kidney stone. In this paper, ultrasound beams of specific shapes were designed by numerical modeling and produced using a phased array. These beams were shown to levitate and electronically steer solid objects (3-mm-diameter glass spheres), along preprogrammed paths, in a water bath, and in the urinary bladders of live pigs. Deviation from the intended path was on average <10%. No injury was found on the bladder wall or intervening tissue.


Asunto(s)
Cálculos Renales/terapia , Terapia por Ultrasonido/métodos , Ondas Ultrasónicas , Animales , Porcinos , Transductores , Terapia por Ultrasonido/instrumentación
3.
J Appl Clin Med Phys ; 22(9): 345-359, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34346559

RESUMEN

BACKGROUND: High-intensity focused ultrasound (HIFU) has been in clinical use for a variety of solid tumors and cancers. Accurate and reliable calibration is in a great need for clinical applications. An extracorporeal clinical HIFU system applied for the investigational device exemption (IDE) to the Food and Drug Administration (FDA) so that evaluation of its characteristics, performance, and safety was required. METHODS: The acoustic pressure and power output was characterized by a fiber optic probe and a radiation force balance, respectively, with the electrical power up to 2000 W. An in situ acoustic energy was established as the clinical protocol at the electrical power up to 500 W. Temperature elevation inside the tissue sample was measured by a thermocouple array. Generated lesion volume at different in situ acoustic energies and pathological examination of the lesions was evaluated ex vivo. RESULTS: Acoustic pressure mapping showed the insignificant presence of side/grating lobes and pre- or post-focal peaks (≤-12 dB). Although distorted acoustic pressure waveform was found in the free field, the nonlinearity was reduced significantly after the beam propagating through tissue samples (i.e., the second harmonic of -11.8 dB at 500 W). Temperature elevation was <10°C at a distance of 10 mm away from a 20-mm target, which suggests the well-controlled HIFU energy deposition and no damage to the surrounding tissue. An acoustic energy in the range of 750-1250 J resulted in discrete lesions with an interval space of 5 mm between the treatment spots. Histology confirmed that the lesions represented a region of permanently damaged cells by heat fixation, without causing cell lysis by either cavitation or boiling. CONCLUSIONS: Our characterization and ex vivo evaluation protocol met the IDE requirement. The in-situ acoustic energy model will be used in clinical trials to deliver almost consistent energy to the various targets.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Acústica , Calibración , Fenómenos Mecánicos , Estados Unidos
4.
Int J Hyperthermia ; 34(3): 284-291, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28715967

RESUMEN

PURPOSE: The lack of effective treatment options for pancreatic cancer has led to a 5-year survival rate of just 8%. Here, we evaluate the ability to enhance targeted drug delivery using mild hyperthermia in combination with the systemic administration of a low-temperature sensitive liposomal formulation of doxorubicin (LTSL-Dox) using a relevant model for pancreas cancer. MATERIALS AND METHODS: Experiments were performed in a genetically engineered mouse model of pancreatic cancer (KPC mice: LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre). LTSL-Dox or free doxorubicin (Dox) was administered via a tail vein catheter. A clinical magnetic resonance-guided high intensity focussed ultrasound (MR-HIFU) system was used to plan treatment, apply the HIFU-induce hyperthermia and monitor therapy. Post-therapy, total Dox concentration in tumour tissue was determined by HPLC and confirmed with fluorescence microscopy. RESULTS: Localized hyperthermia was successfully applied and monitored with a clinical MR-HIFU system. The mild hyperthermia heating algorithm administered by the MR-HIFU system resulted in homogenous heating within the region of interest. MR-HIFU, in combination with LTSL-Dox, resulted in a 23-fold increase in the localised drug concentration and nuclear uptake of doxorubicin within the tumour tissue of KPC mice compared to LTSL-Dox alone. Hyperthermia, in combination with free Dox, resulted in a 2-fold increase compared to Dox alone. CONCLUSION: This study demonstrates that HIFU-induced hyperthermia in combination with LTSL-Dox can be a non-invasive and effective method in enhancing the localised delivery and penetration of doxorubicin into pancreatic tumours.


Asunto(s)
Hipertermia Inducida/métodos , Espectroscopía de Resonancia Magnética/métodos , Neoplasias Pancreáticas/terapia , Ultrasonografía/métodos , Animales , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Ratones , Neoplasias Pancreáticas/patología
5.
Radiology ; 283(1): 158-167, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27802108

RESUMEN

Purpose To compare the abilities of three pulsed focused ultrasound regimes (that cause tissue liquefaction, permeabilization, or mild heating) to release tumor-derived microRNA into the circulation in vivo and to evaluate release dynamics. Materials and Methods All rat experiments were approved by the University of Washington Institutional Animal Care and Use Committee. Reverse-transcription quantitative polymerase chain reaction array profiling was used to identify candidate microRNA biomarkers in a rat solid tumor cell line. Rats subcutaneously grafted with these cells were randomly assigned among three pulsed focused ultrasound treatment groups: (a) local tissue liquefaction via boiling histotripsy, (b) tissue permeabilization via inertial cavitation, and (c) mild (<10°C) heating of tissue, as well as a sham-treated control group. Blood specimens were drawn immediately prior to treatment and serially over 24 hours afterward. Plasma microRNA was quantified with reverse-transcription quantitative polymerase chain reaction, and statistical significance was determined with one-way analysis of variance (Kruskal-Wallis and Friedman tests), followed by the Dunn multiple-comparisons test. Results After tissue liquefaction and cavitation treatments (but not mild heating), plasma quantities of candidate biomarkers increased significantly (P value range, <.0001 to .04) relative to sham-treated controls. A threefold to 32-fold increase occurred within 15 minutes after initiation of pulsed focused ultrasound tumor treatment, and these increases persisted for 3 hours. Histologic examination confirmed complete liquefaction of the targeted tumor area with boiling histotripsy, in addition to areas of petechial hemorrhage and tissue disruption by means of cavitation-based treatment. Conclusion Mechanical tumor tissue disruption with pulsed focused ultrasound-induced bubble activity significantly increases the plasma abundance of tumor-derived microRNA rapidly after treatment. © RSNA, 2016 Online supplemental material is available for this article.


Asunto(s)
Biomarcadores de Tumor/sangre , Ultrasonido Enfocado de Alta Intensidad de Ablación , MicroARNs/sangre , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Animales , Biopsia , Modelos Animales de Enfermedad , Masculino , Próstata/patología , Próstata/cirugía , Ratas
6.
Proc Natl Acad Sci U S A ; 111(22): 8161-6, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843132

RESUMEN

The clinical use of high intensity focused ultrasound (HIFU) therapy for noninvasive tissue ablation has been recently gaining momentum. In HIFU, ultrasound energy from an extracorporeal source is focused within the body to ablate tissue at the focus while leaving the surrounding organs and tissues unaffected. Most HIFU therapies are designed to use heating effects resulting from the absorption of ultrasound by tissue to create a thermally coagulated treatment volume. Although this approach is often successful, it has its limitations, such as the heat sink effect caused by the presence of a large blood vessel near the treatment area or heating of the ribs in the transcostal applications. HIFU-induced bubbles provide an alternative means to destroy the target tissue by mechanical disruption or, at its extreme, local fractionation of tissue within the focal region. Here, we demonstrate the feasibility of a recently developed approach to HIFU-induced ultrasound-guided tissue fractionation in an in vivo pig model. In this approach, termed boiling histotripsy, a millimeter-sized boiling bubble is generated by ultrasound and further interacts with the ultrasound field to fractionate porcine liver tissue into subcellular debris without inducing further thermal effects. Tissue selectivity, demonstrated by boiling histotripsy, allows for the treatment of tissue immediately adjacent to major blood vessels and other connective tissue structures. Furthermore, boiling histotripsy would benefit the clinical applications, in which it is important to accelerate resorption or passage of the ablated tissue volume, diminish pressure on the surrounding organs that causes discomfort, or insert openings between tissues.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/instrumentación , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Hígado/cirugía , Fracciones Subcelulares/diagnóstico por imagen , Terapia por Ultrasonido/instrumentación , Terapia por Ultrasonido/métodos , Animales , Eritrocitos/citología , Ultrasonido Enfocado de Alta Intensidad de Ablación/efectos adversos , Hígado/irrigación sanguínea , Hígado/citología , Circulación Hepática , Pulmón/citología , Pulmón/cirugía , Modelos Animales , Sus scrofa , Transductores , Terapia por Ultrasonido/efectos adversos , Ultrasonografía
7.
Gastrointest Endosc ; 81(5): 1243-50, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25759124

RESUMEN

BACKGROUND: High-intensity focused US (HIFU) is becoming more widely used for noninvasive and minimally invasive ablation of benign and malignant tumors. Recent studies suggest that HIFU can also enhance targeted drug delivery and stimulate an antitumor immune response in many tumors. However, targeting pancreatic and liver tumors by using an extracorporeal source is challenging due to the lack of an adequate acoustic window. The development of an EUS-guided HIFU transducer has many potential benefits including improved targeting, decreased energy requirements, and decreased potential for injury to intervening structures. OBJECTIVE: To design, develop, and test an EUS-guided HIFU transducer for endoscopic applications. DESIGN: A preclinical, pilot characterization and feasibility study. SETTING: Academic research center. PATIENTS: Studies were performed in an in vivo porcine model. INTERVENTION: Thermal ablation of in vivo porcine pancreas and liver was performed with EUS-guided focused US through the gastric tract. RESULTS: The transducer successfully created lesions in gel phantoms and ex vivo bovine livers. In vivo studies demonstrated that targeting and creating lesions in the porcine pancreas and liver are feasible. LIMITATIONS: This was a preclinical, single-center feasibility study with a limited number of subjects. CONCLUSION: An EUS-guided HIFU transducer was successfully designed and developed with dimensions that are appropriate for endoscopic use. The feasibility of performing EUS-guided HIFU ablation in vivo was demonstrated in an in vivo porcine model. Further development of this technology will allow endoscopists to perform precise therapeutic ablation of periluminal lesions without breaching the wall of the gastric tract.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Hígado/diagnóstico por imagen , Páncreas/diagnóstico por imagen , Animales , Bovinos , Endosonografía , Estudios de Factibilidad , Fantasmas de Imagen , Proyectos Piloto , Porcinos , Transductores
8.
Int J Hyperthermia ; 31(2): 145-62, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25707817

RESUMEN

In high intensity focused ultrasound (HIFU) therapy, an ultrasound beam is focused within the body to locally affect the targeted site without damaging intervening tissues. The most common HIFU regime is thermal ablation. Recently there has been increasing interest in generating purely mechanical lesions in tissue (histotripsy). This paper provides an overview of several studies on the development of histotripsy methods toward clinical applications. Two histotripsy approaches and examples of their applications are presented. In one approach, sequences of high-amplitude, short (microsecond-long), focused ultrasound pulses periodically produce dense, energetic bubble clouds that mechanically disintegrate tissue. In an alternative approach, longer (millisecond-long) pulses with shock fronts generate boiling bubbles and the interaction of shock fronts with the resulting vapour cavity causes tissue disintegration. Recent preclinical studies on histotripsy are reviewed for treating benign prostatic hyperplasia (BPH), liver and kidney tumours, kidney stone fragmentation, enhancing anti-tumour immune response, and tissue decellularisation for regenerative medicine applications. Potential clinical advantages of the histotripsy methods are discussed. Histotripsy methods can be used to mechanically ablate a wide variety of tissues, whilst selectivity sparing structures such as large vessels. Both ultrasound and MR imaging can be used for targeting and monitoring the treatment in real time. Although the two approaches utilise different mechanisms for tissue disintegration, both have many of the same advantages and offer a promising alternative method of non-invasive surgery.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Humanos , Litotricia/instrumentación , Neoplasias/terapia , Ingeniería de Tejidos/métodos
9.
J Urol ; 191(1): 235-41, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23917165

RESUMEN

PURPOSE: Focused ultrasonic propulsion is a new noninvasive technique designed to move kidney stones and stone fragments out of the urinary collecting system. However, to our knowledge the extent of tissue injury associated with this technique is not known. We quantitated the amount of tissue injury produced by focused ultrasonic propulsion under simulated clinical treatment conditions and under conditions of higher power or continuous duty cycles. We compared those results to extracorporeal shock wave lithotripsy injury. MATERIALS AND METHODS: A human calcium oxalate monohydrate stone and/or nickel beads were implanted by ureteroscopy in 3 kidneys of live pigs weighing 45 to 55 kg and repositioned using focused ultrasonic propulsion. Additional pig kidneys were exposed to extracorporeal shock wave lithotripsy level pulse intensity or continuous ultrasound exposure 10 minutes in duration using an ultrasound probe transcutaneously or on the kidney. These kidneys were compared to 6 treated with an unmodified Dornier HM3 lithotripter (Dornier Medical Systems, Kennesaw, Georgia) using 2,400 shocks at 120 shock waves per minute and 24 kV. Histological analysis was performed to assess the volume of hemorrhagic tissue injury created by each technique according to the percent of functional renal volume. RESULTS: Extracorporeal shock wave lithotripsy produced a mean ± SEM lesion of 1.56% ± 0.45% of functional renal volume. Ultrasonic propulsion produced no detectable lesion with simulated clinical treatment. A lesion of 0.46% ± 0.37% or 1.15% ± 0.49% of functional renal volume was produced when excessive treatment parameters were used with the ultrasound probe placed on the kidney. CONCLUSIONS: Focused ultrasonic propulsion produced no detectable morphological injury to the renal parenchyma when using clinical treatment parameters but produced injury comparable in size to that of extracorporeal shock wave lithotripsy when using excessive treatment parameters.


Asunto(s)
Cálculos Renales/terapia , Enfermedades Renales/patología , Riñón/lesiones , Litotricia/efectos adversos , Terapia por Ultrasonido/efectos adversos , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Riñón/patología , Enfermedades Renales/etiología , Porcinos
10.
Ultrasonics ; 138: 107225, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38141356

RESUMEN

This work was focused on the newly developed ultrasonic approach for non-invasive surgery - boiling histotripsy (BH) - recently proposed for mechanical ablation of tissues using pulsed high intensity focused ultrasound (HIFU). The BH lesion is known to depend in size and shape on exposure parameters and mechanical properties, structure and composition of tissue being treated. The aim of this work was to advance the concept of BH dose by investigating quantitative relationships between the parameters of the lesion, pulsing protocols, and targeted tissue properties. A HIFU focus of a 1.5 MHz 256-element array driven by power-enhanced Verasonics system was electronically steered along the grid within 12 × 4 × 12 mm volume to produce volumetric lesions in porcine liver (soft, with abundant collagenous structures) and bovine myocardium (stiff, homogenous cellular) ex vivo tissues with various pulsing protocols (1-10 ms pulses, 1-15 pulses per point). Quantification of the lesion size and completeness was performed through serial histological sectioning, and a computer vision approach using a combination of manual and automated detection of fully fractionated and residual tissue based on neural network ResNet-18 was developed. Histological sample fixation led to underestimation of BH ablation rate compared to the ultrasound-based estimations, and provided similar qualitative feedback as did gross inspection. This suggests that gross observation may be sufficient for qualitatively evaluating the BH treatment completeness. BH efficiency in liver tissue was shown to be insensitive to the changes in pulsing protocol within the tested parameter range, whereas in bovine myocardium the efficiency increased with either increasing pulse length or number of pulses per point or both. The results imply that one universal mechanical dose metric applicable to an arbitrary tissue type is unlikely to be established. The dose metric as a product of the BH pulse duration and the number of pulses per sonication point (BHD1) was shown to be more relevant for initial planning of fractionation of collagenous tissues. The dose metric as a number of pulses per point (BHD2) is more suitable for the treatment planning of softer targets primarily containing cellular tissue, allowing for significant acceleration of treatment using shorter pulses.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Animales , Bovinos , Porcinos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Miocardio , Hígado/diagnóstico por imagen , Hígado/cirugía , Ultrasonografía , Sonicación
11.
J Urol ; 190(3): 1090-5, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23583535

RESUMEN

PURPOSE: Focused ultrasound has the potential to expel small stones or residual stone fragments from the kidney, or move obstructing stones to a nonobstructing location. We evaluated the efficacy and safety of ultrasonic propulsion in a live porcine model. MATERIALS AND METHODS: Calcium oxalate monohydrate kidney stones and laboratory model stones (2 to 8 mm) were ureteroscopically implanted in the renal pelvicalyceal system of 12 kidneys in a total of 8 domestic swine. Transcutaneous ultrasonic propulsion was performed using an HDI C5-2 imaging transducer (ATL/Philips, Bothell, Washington) and the Verasonics® diagnostic ultrasound platform. Successful stone relocation was defined as stone movement from the calyx to the renal pelvis, ureteropelvic junction or proximal ureter. Efficacy and procedure time was determined. Three blinded experts evaluated histological injury to the kidney in the control, sham treatment and treatment arms. RESULTS: All 26 stones were observed to move during treatment and 17 (65%) were relocated successfully to the renal pelvis (3), ureteropelvic junction (2) or ureter (12). Average ± SD successful procedure time was 14 ± 8 minutes and a mean of 23 ± 16 ultrasound bursts, each about 1 second in duration, were required. There was no evidence of gross or histological injury to the renal parenchyma in kidneys exposed to 20 bursts (1 second in duration at 33-second intervals) at the same output (2,400 W/cm(2)) used to push stones. CONCLUSIONS: Noninvasive transcutaneous ultrasonic propulsion is a safe, effective and time efficient means to relocate calyceal stones to the renal pelvis, ureteropelvic junction or ureter. This technology holds promise as a useful adjunct to surgical management for renal calculi.


Asunto(s)
Cálculos Renales/terapia , Terapia por Ultrasonido/instrumentación , Terapia por Ultrasonido/métodos , Animales , Oxalato de Calcio/química , Modelos Animales de Enfermedad , Diseño de Equipo , Seguridad de Equipos , Femenino , Inmunohistoquímica , Cálculos Renales/diagnóstico por imagen , Cálculos Renales/patología , Litotricia/métodos , Porcinos , Resultado del Tratamiento , Ultrasonografía
12.
Bioconjug Chem ; 24(2): 167-75, 2013 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-23273065

RESUMEN

Molecular imaging, the visualization of molecular and cellular markers, is a promising method for detection of dysplasia and early cancer in the esophagus and can potentially be used to identify regions of interest for biopsy or tumor margins for resection. EGFR is a previously reported cell surface receptor with stepwise increases in expression during the progression from Barrett's metaplasia to adenocarcinoma. In this work, a 200 nm fluorescent nanoparticle contrast agent was synthesized for targeted imaging of EGFR through a series of surface modifications to dye-encapsulated polystyrene particles. Amino-functionalized polystyrene particles were PEGylated using a heterobifunctional PEG linker. Subsequently, thiolated M225 antibodies were conjugated to maleimide functional groups on attached PEGs for EGFR targeting. In vitro binding studies using flow cytometry demonstrated specific binding of M225-PEG-NP to EGFR-expressing cells with minimal nonspecific binding in EGFR(-) cells. Binding was shown to increase proportionally with the number of conjugated M225 antibodies. Adsorbed formulations with unmodified M225 antibodies, M225 + PEG-NP, were synthesized using the same antibody feeds used in M225-PEG-NP synthesis to determine the contribution of adsorbed antibodies to EGFR targeting. Adsorbed antibodies were less efficient at mediated nanoparticle targeting to EGFR than conjugated antibodies. Finally, M225-PEG-NP demonstrated binding to EGFR-expressing regions in human esophageal tissue sections.


Asunto(s)
Anticuerpos , Receptores ErbB/análisis , Colorantes Fluorescentes , Nanopartículas , Neoplasias/diagnóstico , Imagen Óptica/métodos , Adenocarcinoma/diagnóstico , Anticuerpos/química , Esófago de Barrett/diagnóstico , Línea Celular Tumoral , Medios de Contraste/química , Neoplasias Esofágicas/diagnóstico , Esófago/patología , Colorantes Fluorescentes/química , Humanos , Imagen Molecular/métodos , Nanopartículas/química , Polietilenglicoles/química , Poliestirenos/química
13.
Foot (Edinb) ; 56: 101989, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36905794

RESUMEN

BACKGROUND: Plantar ulceration is a serious complication of diabetes. However, the mechanism of injury initiating ulceration remains unclear. The unique structure of the plantar soft tissue includes superficial and deep layers of adipocytes contained in septal chambers, however, the size of these chambers has not been quantified in diabetic or non-diabetic tissue. Computer-aided methods can be leveraged to guide microstructural measurements and differences with disease status. METHODS: Adipose chambers in whole slide images of diabetic and non-diabetic plantar soft tissue were segmented with a pre-trained U-Net and area, perimeter, and minimum and maximum diameter of adipose chambers were measured. Whole slide images were classified as diabetic or non-diabetic using the Axial-DeepLab network, and the attention layer was overlaid on the input image for interpretation. RESULTS: Non-diabetic deep chambers were 90 %, 41 %, 34 %, and 39 % larger in area (26,954 ± 2428 µm2 vs 14,157 ± 1153 µm2), maximum (277 ± 13 µm vs 197 ± 8 µm) and minimum (140 ± 6 µm vs 104 ± 4 µm) diameter, and perimeter (405 ± 19 µm vs 291 ± 12 µm), respectively, than the superficial (p < 0.001). However, there was no significant difference in these parameters in diabetic specimens (area 18,695 ± 2576 µm2 vs 16627 ± 130 µm2, maximum diameter 221 ± 16 µm vs 210 ± 14 µm, minimum diameter 121 ± 8 µm vs 114 ± 7 µm, perimeter 341 ± 24 µm vs 320 ± 21 µm). Between diabetic and non-diabetic chambers, only the maximum diameter of the deep chambers differed (221 ± 16 µm vs 277 ± 13 µm). The attention network achieved 82 % accuracy on validation, but the attention resolution was too coarse to identify meaningful additional measurements. CONCLUSIONS: Adipose chamber size differences may provide a basis for plantar soft tissue mechanical changes with diabetes. Attention networks are promising tools for classification, but additional care is required when designing networks for identifying novel features. DATA AVAILABILITY: All images, analysis code, data, and/or other resources required to replicate this work are available from the corresponding author upon reasonable request.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Humanos
14.
Ultrasonics ; 132: 106993, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37099937

RESUMEN

Pulsed high intensity focused ultrasound (pHIFU) is a non-invasive method that allows to permeabilize pancreatic tumors through inertial cavitation and thereby increase the concentration of systemically administered drug. In this study the tolerability of weekly pHIFU-aided administrations of gemcitabine (gem) and their influence on tumor progression and immune microenvironment were investigated in genetically engineered KrasLSL.G12D/þ; p53R172H/þ; PdxCretg/þ (KPC) mouse model of spontaneously occurring pancreatic tumors. KPC mice were enrolled in the study when the tumor size reached 4-6 mm and treated once a week with either ultrasound-guided pHIFU (1.5 MHz transducer, 1 ms pulses, 1% duty cycle, peak negative pressure 16.5 MPa) followed by administration of gem (n = 9), gem only (n = 5) or no treatment (n = 8). Tumor progression was followed by ultrasound imaging until the study endpoint (tumor size reaching 1 cm), whereupon the excised tumors were analyzed by histology, immunohistochemistry (IHC) and gene expression profiling (Nanostring PanCancer Immune Profiling panel). The pHIFU + gem treatments were well tolerated; the pHIFU-treated region of the tumor turned hypoechoic immediately following treatment in all mice, and this effect persisted throughout the observation period (2-5 weeks) and corresponded to areas of cell death, according to histology and IHC. Enhanced labeling by Granzyme-B was observed within and adjacent to the pHIFU treated area, but not in the non-treated tumor tissue; no difference in CD8 + staining was observed between the treatment groups. Gene expression analysis showed that the pHIFU + gem combination treatment lead to significant downregulation of 162 genes related to immunosuppression, tumorigenesis, and chemoresistance vs gem only treatment.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Neoplasias Pancreáticas , Ratones , Animales , Gemcitabina , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Neoplasias Pancreáticas/tratamiento farmacológico , Modelos Animales de Enfermedad , Línea Celular Tumoral , Microambiente Tumoral , Neoplasias Pancreáticas
15.
Ultrasound Med Biol ; 49(12): 2451-2458, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37718123

RESUMEN

OBJECTIVE: Bacterial loads can be effectively reduced using cavitation-mediated focused ultrasound, or histotripsy. In this study, gram-negative bacteria (Escherichia coli) in suspension were used as model bacteria to evaluate the effectiveness of two regimens of histotripsy treatments: cavitation histotripsy (CH) and boiling histotripsy (BH). METHODS: Ten-milliliter volumes of Escherichia coli were treated at different negative focal pressure amplitudes and over time periods up to 40 min. Cavitation activity was characterized with coaxial passive cavitation detection (PCD) and synchronized plane wave B-mode imaging. RESULTS: CH treatments exhibited a threshold behavior that was consistent with PCD metrics of cavitation. Above the threshold, bacterial inactivation followed a monotonically increasing log-linear relationship that indicated an exponential inactivation rate. BH exhibited no threshold, but instead followed a different monotonically increasing inactivation rate. Inactivation rates were larger for BH at or below the CH threshold, and larger for CH substantially above the threshold. CH studies performed at different pulse lengths at the same duty cycle had similar inactivation rates, suggesting that at any given pressure amplitude, the "on time" was the most important variable for inactivating E. coli. The maximum inactivation was produced by CH at the highest pressure amplitudes used, leading to a log reduction >4.2 for a 40 min treatment. CONCLUSION: The results of this study suggest that both CH and BH can be used to inactivate E. coli in suspension, with the optimal regimen depending on the attainable peak negative focal pressure at the target.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Litotricia , Escherichia coli , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Litotricia/métodos , Fantasmas de Imagen
16.
Ultrasound Med Biol ; 49(1): 62-71, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36207225

RESUMEN

Boiling histotripsy (BH) is a focused ultrasound technology that uses millisecond-long pulses with shock fronts to induce mechanical tissue ablation. The pulsing scheme and mechanisms of BH differ from those of cavitation cloud histotripsy, which was previously developed for benign prostatic hyperplasia. The goal of the work described here was to evaluate the feasibility of using BH to ablate fresh ex vivo human prostate tissue as a proof of principle for developing BH for prostate applications. Fresh human prostate samples (N = 24) were obtained via rapid autopsy (<24 h after death, institutional review board exempt). Samples were analyzed using shear wave elastography to ensure that mechanical properties of autopsy tissue were clinically representative. Samples were exposed to BH using 10- or 1-ms pulses with 1% duty cycle under real-time B-mode and Doppler imaging. Volumetric lesions were created by sonicating 1-4 rectangular planes spaced 1 mm apart, containing a grid of foci spaced 1-2 mm apart. Tissue then was evaluated grossly and histologically, and the lesion content was analyzed using transmission electron microscopy and scanning electron microscopy. Observed shear wave elastography characterization of ex vivo prostate tissue (37.9 ± 22.2 kPa) was within the typical range observed clinically. During BH, hyperechoic regions were visualized at the focus on B-mode, and BH-induced bubbles were also detected using power Doppler. As treatment progressed, hypoechoic regions of tissue appeared, suggesting successful tissue fractionation. BH treatment was twofold faster using shorter pulses (1 ms vs. 10 ms). Histological analysis revealed lesions containing completely homogenized cell debris, consistent with histotripsy-induced mechanical ablation. It was therefore determined that BH is feasible in fresh ex vivo human prostate tissue producing desired mechanical ablation. The study supports further work aimed at translating BH technology as a clinical option for prostate ablation.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Masculino , Humanos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Próstata/diagnóstico por imagen , Próstata/cirugía
17.
J Urol ; 187(2): 739-43, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22177202

RESUMEN

PURPOSE: A persistent stone burden after renal stone treatment may result in future patient morbidity and potentially lead to additional surgery. This problem is particularly common after treatment of lower pole stones. We describe a potential noninvasive therapeutic option using ultrasound waves to create a force sufficient to aid in stone fragment expulsion. MATERIALS AND METHODS: Human stones were implanted by retrograde ureteroscopy or antegrade percutaneous access in a live porcine model. The calibrated probe of a system containing ultrasound imaging and focused ultrasound was used to target stones and attempt displacement. To assess for injury an additional 6 kidneys were exposed for 2 minutes each directly to the output used for stone movement. Another 6 kidneys were exposed to more than twice the maximum output used to move stones. Renal tissue was analyzed histologically with hematoxylin and eosin, and nicotinamide adenine dinucleotide staining. RESULTS: Stones were moved to the renal pelvis or ureteropelvic junction by less than 2 minutes of exposure. Stone velocity was approximately 1 cm per second. There was no tissue injury when tissue was exposed to the power level used to move stones. Localized thermal coagulation less than 1 cm long was observed in 6 of 7 renal units exposed to the level above that used for ultrasonic propulsion. CONCLUSIONS: Transcutaneous ultrasonic propulsion was used to expel calculi effectively and safely from the kidney using a live animal model. This study is the first step toward an office based system to clear residual fragments and toward use as a primary treatment modality in conjunction with medical expulsive therapy for small renal stones.


Asunto(s)
Cálculos Renales/terapia , Terapia por Ultrasonido , Animales , Diseño de Equipo , Femenino , Porcinos , Terapia por Ultrasonido/instrumentación , Terapia por Ultrasonido/métodos
18.
Cancers (Basel) ; 14(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35205746

RESUMEN

Pancreatic ductal adenocarcinomas are characterized by a complex and robust tumor microenvironment (TME) consisting of fibrotic tissue, excessive levels of hyaluronan (HA), and immune cells. We utilized quantitative multi-parametric magnetic resonance imaging (mp-MRI) methods at 14 Tesla in a genetically engineered KPC (KrasLSL-G12D/+, Trp53LSL-R172H/+, Cre) mouse model to assess the complex TME in advanced stages of tumor development. The whole tumor, excluding cystic areas, was selected as the region of interest for data analysis and subsequent statistical analysis. Pearson correlation was used for statistical inference. There was a significant correlation between tumor volume and T2 (r = -0.66), magnetization transfer ratio (MTR) (r = 0.60), apparent diffusion coefficient (ADC) (r = 0.48), and Glycosaminoglycan-chemical exchange saturation transfer (GagCEST) (r = 0.51). A subset of mice was randomly selected for histological analysis. There were positive correlations between tumor volume and fibrosis (0.92), and HA (r = 0.76); GagCEST and HA (r = 0.81); and MTR and CD31 (r = 0.48). We found a negative correlation between ADC low-b (perfusion) and Ki67 (r = -0.82). Strong correlations between mp-MRI and histology results suggest that mp-MRI can be used as a non-invasive tool to monitor the tumor microenvironment.

19.
Ultrasound Med Biol ; 48(9): 1762-1777, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35697582

RESUMEN

Tissue-mimicking gels provide a cost-effective medium to optimize histotripsy treatment parameters with immediate feedback. Agarose and polyacrylamide gels are often used to evaluate treatment outcomes as they mimic the acoustic properties and stiffness of a variety of soft tissues, but they do not exhibit high toughness, a characteristic of fibrous connective tissue. To mimic pathologic fibrous tissue found in benign prostate hyperplasia (BPH) and other diseases that are potentially treatable with histotripsy, an optically transparent hydrogel with high toughness was developed that is a hybrid of polyacrylamide and alginate. The stiffness was established using shear wave elastography (SWE) and indentometry techniques and was found to be representative of human BPH ex vivo prostate tissue. Different phantom compositions and excised ex vivo BPH tissue samples were treated with a 700-kHz histotripsy transducer at different pulse repetition frequencies. Post-treatment, the hybrid gels and the tissue samples exhibited differential reduction in stiffness as measured by SWE. On B-mode ultrasound, partially treated areas were present as hyperechoic zones and fully liquified areas as hypoechoic zones. Phase contrast microscopy of the gel samples revealed liquefaction in regions consistent with the target lesion dimensions and correlated to findings identified in tissue samples via histology. The dose required to achieve liquefaction in the hybrid gel was similar to what has been observed in ex vivo tissue and greater than that of agarose of comparable or higher Young's modulus by a factor >10. These results indicate that the developed hydrogels closely mimic elasticities found in BPH prostate ex vivo tissue and have a similar response to histotripsy treatment, thus making them a useful cost-effective alternative for developing and evaluating different treatment protocols.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Hiperplasia Prostática , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Humanos , Hidrogeles , Masculino , Fantasmas de Imagen , Sefarosa
20.
Int J Impot Res ; 34(5): 477-486, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34035467

RESUMEN

Peyronie's disease affects penile mechanics, but published research lacks biomechanical characterization of affected tunica albuginea. This work aims to establish mechanical testing methodology and characterize pathological tissue mechanics of Peyronie's disease. Tunica albuginea was obtained from patients (n = 5) undergoing reconstructive surgery for Peyronie's disease, sectioned into test specimens (n = 12), stored frozen at -20 °C, and imaged with micro-computed tomography (µCT). A tensile testing protocol was developed based on similar soft tissues. Correlation of mechanical summary variables (force, displacement, stiffness, work, Young's modulus, ultimate tensile stress, strain at ultimate tensile stress, and toughness) and µCT features were assessed with linear regression. Specimens empirically grouped into hard or soft stress-strain behavior were compared using a Student's t-test. Surface strain and failure patterns were described qualitatively. Specimens displayed high inter- and intra-subject variability. Mineralization volume was not correlated with mechanical parameters. Empirically hard tissue had higher ultimate tensile stress. Failure mechanisms and strain patterns differed between mineralized and non-mineralized specimens. Size, shape, and quantity of mineralization may be more important in determining Peyronie's disease plaque behavior than presence of mineralization alone, and single summary variables like modulus may not fully describe mechanical behavior.


Asunto(s)
Induración Peniana , Fibrosis , Humanos , Masculino , Induración Peniana/cirugía , Pene/patología , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda