Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Vet Res ; 55(1): 126, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39350238

RESUMEN

Long-chain fatty acid transport protein 1 (FATP1) is a member of the fatty acid transporter family. It facilitates transmembrane transport of fatty acids and participates in lipid metabolism. Lipids are essential components of the cell and organelle membranes of Trichinella spiralis. The nematode has lost the capacity to synthesise the necessary lipids de novo and has instead evolved to obtain fatty acids and their derivatives from its host. This study aims to ascertain the primary biological characteristics and roles of T. spiralis FATP1 (TsFATP1) in lipid metabolism, larval moulting, and the development of this nematode. The results show that TsFATP1 is highly expressed at enteral T. spiralis stages, mainly localised at the cuticle, the stichosome and the intrauterine embryos of the parasite. The silencing of the TsFATP1 gene by TsFATP1-specific dsRNA significantly decreases the expression levels of TsFATP1 in the worm. It reduces the contents of ATP, triglycerides, total cholesterol, and phospholipids both in vitro and in vivo. RNAi inhibits lipid metabolism, moulting, and the growth of this nematode. The results demonstrate that TsFATP1 plays an essential role in lipid metabolism, moulting, and the development of T. spiralis. It could also be a target candidate for the anti-Trichinella vaccine and drugs.


Asunto(s)
Proteínas de Transporte de Ácidos Grasos , Proteínas del Helminto , Larva , Metabolismo de los Lípidos , Trichinella spiralis , Animales , Trichinella spiralis/genética , Trichinella spiralis/fisiología , Trichinella spiralis/metabolismo , Trichinella spiralis/crecimiento & desarrollo , Proteínas de Transporte de Ácidos Grasos/metabolismo , Proteínas de Transporte de Ácidos Grasos/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Muda/fisiología , Ratones , Femenino , Triquinelosis/parasitología , Triquinelosis/veterinaria
2.
Vet Res ; 54(1): 77, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37705099

RESUMEN

Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1), or cysteine cathepsin C, is a secretory protein that is highly expressed during the infective larvae and adult worm stages in the intestines. The aim of this study was to investigate the mechanism by which recombinant TsDPP1 (rTsDPP1) activates macrophages M2 polarization and decreases macrophage cytotoxicity to kill newborn larvae via ADCC. RAW264.7 macrophages and murine peritoneal macrophages were used in this study. The results of the immunofluorescence test (IFT) and confocal microscopy showed that rTsDPP1 specifically bound to macrophages, and the binding site was localized on the cell membrane. rTsDPP1 activated macrophage M2 polarization, as demonstrated by high expression levels of Arg1 (M2 marker) and M2-related genes (IL-10, TGF-ß, CD206 and Arg1) and high numbers of CD206+ macrophages. Furthermore, the expression levels of p-STAT6, STAT6 and PPARγ were obviously increased in rTsDPP1-treated macrophages, which were evidently abrogated by using a STAT6 inhibitor (AS1517499) and PPARγ antagonist (GW9662). The results indicated that rTsDPP1 promoted macrophage M2 polarization through the STAT6/PPARγ pathway. Griess reaction results revealed that rTsDPP1 suppressed LPS-induced NO production in macrophages. qPCR and flow cytometry results showed that rTsDPP1 downregulated the expression of FcγR I (CD64) in macrophages. The ability of ADCC to kill newborn larvae was significantly decreased in rTsDPP1-treated macrophages, but AS1517499 and GW9662 restored its killing capacity. Our results demonstrated that rTsDPP1 induced macrophage M2 polarization, upregulated the expression of anti-inflammatory cytokines, and inhibited macrophage-mediated ADCC via activation of the STAT6/PPARγ pathway, which is beneficial to the parasitism and immune evasion of this nematode.


Asunto(s)
Trichinella spiralis , Animales , Ratones , PPAR gamma/genética , Macrófagos , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas
3.
Vet Res ; 54(1): 113, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012694

RESUMEN

Previous studies showed that Trichinella spiralis galectin (Tsgal) facilitates larval invasion of intestinal epithelium cells (IECs). However, IEC proteins binding with Tsgal were not identified, and the mechanism by which Tsgal promotes larval invasion is not clear. Toll-like receptors (TLRs) are protein receptors responsible for recognition of pathogens. The aim of this study was to investigate whether recombinant Tsgal (rTsgal) binds to TLR-4, activates inflammatory pathway in gut epithelium and mediates T. spiralis invasion. Indirect immunofluorescence (IIF), GST pull-down and co-immunoprecipitation (Co-IP) assays confirmed specific binding between rTsgal and TLR-4 in Caco-2 cells. qPCR and Western blotting showed that binding of rTsgal with TLR-4 up-regulated the TLR-4 transcription and expression in Caco-2 cells, and activated p-NF-κB p65 and p-ERK1/2. Activation of inflammatory pathway TLR-4/MAPK-NF-κB by rTsgal up-regulated pro-inflammatory cytokines (IL-1ß and IL-6) and down-regulated anti-inflammatory cytokine TGF-ß in Caco-2 cells, and induced intestinal inflammation. TAK-242 (TLR-4 inhibitor) and PDTC (NF-κB inhibitor) significantly inhibited the activation of TLR-4 and MAPK-NF-κB pathway. Moreover, the two inhibitors also inhibited IL-1ß and IL-6 expression, and increased TGF-ß expression in Caco-2 cells. In T. spiralis infected mice, the two inhibitors also inhibited the activation of TLR-4/MAPK-NF-κB pathway, ameliorated intestinal inflammation, impeded larval invasion of gut mucosa and reduced intestinal adult burdens. The results showed that rTsgal binding to TLR-4 in gut epithelium activated MAPK-NF-κB signaling pathway, induced the expression of TLR-4 and pro-inflammatory cytokines, and mediated larval invasion. Tsgal might be regarded as a candidate molecular target of vaccine against T. spiralis enteral invasive stage.


Asunto(s)
Trichinella spiralis , Ratones , Animales , Humanos , Trichinella spiralis/fisiología , Receptor Toll-Like 4/genética , FN-kappa B/metabolismo , Células CACO-2 , Larva/fisiología , Galectinas , Interleucina-6 , Mucosa Intestinal/metabolismo , Citocinas/metabolismo , Inflamación/veterinaria , Factor de Crecimiento Transformador beta
4.
Vet Res ; 54(1): 86, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37784173

RESUMEN

C-type lectin (CTL) is a protein that binds to saccharides and plays an important role in parasite adhesion, host cell invasion and immune evasion. Previous studies showed that recombinant T. spiralis C-type lectin (rTsCTL) promotes larval invasion of intestinal epithelium cells (IEC), whereas anti-rTsCTL antibodies inhibits larval invasion. Syndecan-1 (SDC-1) is a member of the heparan sulfate proteoglycan family which is mainly expressed on the surface of IEC and in extracellular matrices where they interact with a plethora of ligands. SDC-1 has a principal role in maintaining cell morphogenesis, establishing cell-cell adhesions, and regulating the gut mucosal barrier. The aim of this study was to investigate whether rTsCTL binds to SDC-1 on IEC, and the binding of rTsCTL with SDC-1 promotes larval invasion and its mechanism. IFA results show that rTsCTL and SDC-1 co-localized on Caco-2 cell membrane. GST pull-down and Co-IP verified the direct interaction between rTsCTL and SDC-1 on Caco-2 cells. qPCR and Western blotting revealed that rTsCTL binding to SDC-1 increased the expression of SDC-1 and claudin-2, and reduced the expression of occludin and claudin-1 in Caco-2 cells incubated with rTsCTL via the STAT3 pathway. ß-Xyloside (a syndecan-1 synthesis inhibitor) and Stattic (a STAT3 inhibitor) significantly inhibited rTsCTL binding to syndecan-1 in Caco-2 cells and activation of the STAT3 pathway, abrogated the effects of rTsCTL on the expression of gut tight junctions, and impeded larval invasion. The results demonstrate that binding of rTsCTL to SDC-1 on Caco-2 cells activated the STAT3 pathway, decreased gut tight junction expression, damaged the integrity of the gut epithelial barrier, and mediated T. spiralis invasion of the gut mucosa. TsCTL might be regarded as a candidate vaccine target against T. spiralis invasion and infection.


Asunto(s)
Trichinella spiralis , Triquinelosis , Animales , Ratones , Humanos , Trichinella spiralis/fisiología , Triquinelosis/parasitología , Triquinelosis/veterinaria , Larva/fisiología , Células CACO-2 , Sindecano-1/genética , Sindecano-1/metabolismo , Mucosa Intestinal/metabolismo , Células Epiteliales/metabolismo , Ratones Endogámicos BALB C
5.
Vet Res ; 53(1): 48, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739604

RESUMEN

Cathepsin L is an important cysteine protease, but its function in T. spiralis remains unclear. The aim of this research was to explore the biological characteristics of T. spiralis cathepsin L (TsCatL) and its role in T. spiralis-host interactions. Bioinformatic analysis revealed the presence of the cysteine protease active site residues Gln, Cys, His and Asn in mature TsCatL, as well as specific motifs of cathepsin L similar to ERFNIN and GYLND in the prepeptide of TsCatL. Molecular docking of mature TsCatL and E64 revealed hydrophobic effects and hydrogen bonding interactions. Two domains of TsCatL (TsCatL2) were cloned and expressed, and recombinant TsCatL2 (rTsCatL2) was autocatalytically cleaved under acidic conditions to form mature TsCatL. TsCatL was transcribed and expressed in larvae and adults and located in the stichosome, gut and embryo. Enzyme kinetic tests showed that rTsCatL2 degraded the substrate Z-Phe-Arg-AMC under acidic conditions, which was inhibited by E64 and PMSF and enhanced by EDTA, L-cysteine and DTT. The kinetic parameters of rTsCatL2 were a Km value of 48.82 µM and Vmax of 374.4 nM/min at pH 4.5, 37 °C and 5 mM DTT. In addition, it was shown that rTsCatL2 degraded haemoglobin, serum albumin, immunoglobulins (mouse IgG, human IgG and IgM) and extracellular matrix components (fibronectin, collagen I and laminin). The proteolytic activity of rTsCatL2 was host specific and significantly inhibited by E64. rTsCatL2 possesses the natural activity of a sulfhydryl-containing cysteine protease, and TsCatL is an important digestive enzyme that seems to be important for the nutrient acquisition, immune evasion and invasion of Trichinella in the host.


Asunto(s)
Proteasas de Cisteína , Trichinella spiralis , Animales , Catepsina L/genética , Proteasas de Cisteína/metabolismo , Inmunoglobulina G , Ratones , Simulación del Acoplamiento Molecular
6.
Vet Res ; 53(1): 85, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36258242

RESUMEN

The aim of this study was to investigate the characteristics of a novel type C lectin from Trichinella spiralis (TsCTL) and its role in larval invasion of intestinal epithelial cells (IECs). TsCTL has a carbohydrate recognition domain (CRD) of C-type lectin. The full-length TsCTL cDNA sequence was cloned and expressed in Escherichia coli BL21. The results of qPCR, Western blotting and immunofluorescence assays (IFAs) showed that TsCTL was a surface and secretory protein that was highly expressed at the T. spiralis intestinal infective larva (IIL) stages and primarily located at the cuticle, stichosome and embryos of the parasite. rTsCTL could specifically bind with IECs, and the binding site was localized in the IEC nucleus and cytoplasm. The IFA results showed that natural TsCTL was secreted and bound to the enteral epithelium at the intestinal stage of T. spiralis infection. The rTsCTL had a haemagglutinating effect on murine erythrocytes, while mannose was able to inhibit the rTsCTL agglutinating effect for mouse erythrocytes. rTsCTL accelerated larval intrusion into the IECs, whereas anti-rTsCTL antibodies and mannose significantly impeded larval intrusion in a dose-dependent manner. The results indicated that TsCTL specifically binds to IECs and promotes larval invasion of intestinal epithelium, and it might be a potential target of vaccines against T. spiralis enteral stages.


Asunto(s)
Enfermedades de los Roedores , Trichinella spiralis , Triquinelosis , Vacunas , Ratones , Animales , Triquinelosis/parasitología , Triquinelosis/veterinaria , Larva/genética , ADN Complementario , Lectinas Tipo C/metabolismo , Manosa/metabolismo , Proteínas del Helminto/metabolismo , Ratones Endogámicos BALB C , Células Epiteliales/metabolismo
7.
Vet Res ; 53(1): 19, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35255974

RESUMEN

The intestinal epithelium is the first natural barrier against Trichinella spiralis larval invasion, but the mechanism of larval invasion of the gut epithelium is not fully elucidated. The aim of this study was to investigate whether the excretory/secretory proteins (ESPs) of T. spiralis intestinal infective larvae (IIL) degrade tight junction (TJ) proteins, to assess the main ESP proteases hydrolysing TJ proteins using various enzyme inhibitors and to define the key invasive factors in IIL invasion of the gut epithelium. The results of immunofluorescence, Western blot and Transwell assays showed that serine proteases and cysteine proteases in the ESPs played main roles in hydrolysing occludin, claudin-1 and E-cad and upregulating claudin-2 expression. Challenge infection results showed that IIL expulsion from the gut at 12 hpi was significantly higher in mice which were infected with muscle larvae (ML) treated with a single inhibitor (PMSF, E-64, 1,10-Phe or pepstatin) or various mixtures containing PMSF and E-64 than in mice in the PBS group or the groups treated with an inhibitor mixture not containing PMSF and E-64 (P < 0.0001). At 6 days post-infection, mice which were infected with ML treated with PMSF, E-64, 1,10-Phe or pepstatin exhibited 56.30, 64.91, 26.42 and 31.85% reductions in intestinal adult worms compared to mice in the PBS group (P < 0.0001). The results indicate that serine proteases and cysteine proteases play key roles in T. spiralis IIL invasion, growth and survival in the host and that they may be main candidate target molecules for vaccines against larval invasion and development.


Asunto(s)
Enfermedades de los Roedores , Trichinella spiralis , Triquinelosis , Animales , Células Epiteliales/metabolismo , Proteínas del Helminto/metabolismo , Larva , Ratones , Ratones Endogámicos BALB C , Serina Proteasas , Trichinella spiralis/fisiología , Triquinelosis/veterinaria
8.
Exp Parasitol ; 242: 108376, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36089006

RESUMEN

Aminopeptidases P are metalloproteases belonging to the M24 peptidase family. It specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids, and plays an important role in the nutrition, metabolism and growth of parasites. The aim of this study was to characterize a novel Trichinella spiralis aminopeptidase P (TsAPP) and to investigate its functions in the invasion of T. spiralis. TsAPP contained two domains of creatinase (a creatinase N and creatinase N2) and a domain of peptidase M24C and APP. The complete TsAPP sequence was cloned and expressed in Escherichia coli BL21 cells. The recombinantly produced TsAPP was used to raise polyclonal antibodies that were subsequently used to detect the expression of the protein in the different life stages of T. spiralis. TsAPP was expressed in various T. spiralis stages. TsAPP was primarily localized in the cuticle, stichosome and intrauterine embryos of this nematode. rTsAPP has an enzymatic activity of a natural aminopeptidase P to hydrolyze the substrate H-Ala-Pro-OH. rTsAPP promoted the larval intrusion of intestinal epithelium cells (IECs). The results showed that TsAPP is involved in the T. spiralis intrusion of IECs and it might be a potential candidate vaccine target against Trichinella infection.


Asunto(s)
Trichinella spiralis , Triquinelosis , Vacunas , Ratones , Animales , Proteínas del Helminto , Ratones Endogámicos BALB C , Triquinelosis/parasitología , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Células Epiteliales/parasitología , Larva
9.
Vet Res ; 52(1): 6, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413587

RESUMEN

Inorganic pyrophosphatase (PPase) participates in energy cycle and plays a vital role in hydrolysis of inorganic pyrophosphate (PPi) into inorganic phosphate (Pi). The aim of this study was to investigate the biological properties of a Trichinella spiralis PPase (TsPPase) and its role in larval molting and developmental process. The predicted TsPPase consisted of 367 amino acids with a molecular mass of 41.48 kDa and a pI of 5.76. Amino acid sequence alignment and phylogenetic analysis showed that the TsPPase gene encodes a functional family I soluble PPase with the same characteristics as prokaryotic, plant and animal/fungal soluble PPase. The rTsPPase was expressed and purified, it has the activity to catalyze the hydrolysis of PPi to Pi, and the activity was dependent on Mg2+, pH and temperature. The enzymatic activity of rTsPPase was significantly inhibited after its metal binding sites mutation. TsPPase was transcribed and expressed in all T. spiralis phases, especially in muscle larvae (ML) and intestinal infective larvae (IIL). Immunofluorescence assay (IFA) revealed that TsPPase was mainly located in cuticle and stichosome. When the ML and IIL were treated with TsPPase-specific siRNA-279, TsPPase expression and enzymatic activity were obviously reduced, the larval molting and development were also impeded. Intestinal IIL as well as AW burden, IIL molting rates from mice infected with siRNA-treated ML were obviously suppressed. The results indicated that rTsPPase possesses the enzymatic activity of native inorganic pyrophosphatase, and TsPPase plays an important role in development and molting process of intestinal T. spiralis larval stages.


Asunto(s)
Pirofosfatasa Inorgánica/fisiología , Trichinella spiralis/crecimiento & desarrollo , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Femenino , Técnica del Anticuerpo Fluorescente , Pirofosfatasa Inorgánica/genética , Pirofosfatasa Inorgánica/metabolismo , Larva , Ratones , Ratones Endogámicos BALB C , Muda/fisiología , Mutagénesis Sitio-Dirigida , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Trichinella spiralis/enzimología , Trichinella spiralis/genética , Trichinella spiralis/fisiología , Triquinelosis/parasitología , Triquinelosis/veterinaria
10.
Vet Res ; 52(1): 113, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446106

RESUMEN

The aim of this study was to investigate the biological properties of a novel gut-specific cysteine protease in Trichinella spiralis (TsGSCP) and its role in larval intrusion, development and fecundity. TsGSCP has a functional C1 peptidase domain; C1 peptidase belongs to cathepsin B family. The TsGSCP gene cloned and expressed in Escherichia coli BL21 showed intensive immunogenicity. qPCR and Western blotting revealed that TsGSCP mRNA and protein were expressed at various T. spiralis stages, but their expression levels in intestinal infectious larvae (IIL) were clearly higher than those in muscle larvae (ML), adult worms (AWs) and new-born larvae (NBL). Indirect immunofluorescence (IIF) analysis showed that TsGSCP was primarily located at the outer cuticle and the intrauterine embryos of this parasite. rTsGSCP showed the ability to specifically bind with IECs, and the binding site is within the IEC cytoplasm. rTsGSCP accelerated larval intrusion into host intestinal epithelial cells (IECs), whereas anti-rTsGSCP antibodies suppressed larval intrusion; the acceleration and suppression was induced by rTsGSCP and anti-rTsGSCP antibodies, respectively, in a dose-dependent manner. When ML were transfected with TsGSCP-specific dsRNA, TsGSCP expression and enzymatic activity were reduced by 46.82 and 37.39%, respectively, and the capacity of the larvae to intrude into IECs was also obviously impeded. Intestinal AW burden and adult female length and fecundity were significantly decreased in the group of mice infected with dsRNA-transfected ML compared to the control dsRNA and PBS groups. The results showed that TsGSCP plays a principal role in gut intrusion, worm development and fecundity in the T. spiralis lifecycle and might be a candidate target for vaccine development against Trichinella intrusion and infection.


Asunto(s)
Proteasas de Cisteína/genética , Proteínas del Helminto/genética , Trichinella spiralis/fisiología , Secuencia de Aminoácidos , Animales , Proteasas de Cisteína/química , Proteasas de Cisteína/metabolismo , Femenino , Fertilidad , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/fisiología , Ratones , Filogenia , Alineación de Secuencia/veterinaria , Trichinella spiralis/genética , Trichinella spiralis/crecimiento & desarrollo , Trichinella spiralis/metabolismo , Triquinelosis/veterinaria
11.
Vet Res ; 51(1): 43, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32169101

RESUMEN

Trichinella spiralis is an important foodborne parasitic nematode that represents an enormous threat to the food safety of pork meat. The development of a preventive vaccine is valuable for the prevention and control of Trichinella infection in domestic pigs to ensure pork safety. Elastase is a trypsin-like serine protease that hydrolyzes the host's diverse tissue components and participates in parasite penetration, and it might be a novel vaccine target molecule. The aim of this study was to assess the protective immunity produced by vaccination with a novel Trichinella spiralis elastase-1 (TsE) in a mouse model. The results demonstrate that subcutaneous vaccination of mice with rTsE elicited a systemic humoral response (high levels of serum IgG and subclass IgG1/IgG2a and IgA) and significant local enteral mucosal sIgA responses. Anti-rTsE IgG recognized the native TsE at the cuticle, stichosome of intestinal infective larvae and adult worm (AW), and intrauterine embryos of female AW. The rTsE vaccination also produced a systemic and local mixed Th1/Th2 response, as demonstrated by clear elevation levels of Th1 cytokines (IFN-γ, IL-2) and Th2 cytokines (IL-4, IL-10) after spleen, mesenteric lymph node and Peyer's patch cells from immunized mice were stimulated with rTsE. The immunized mice exhibited a 52.19% reduction in enteral AW and a 64.06% reduction in muscle larvae after challenge infection. The immune response triggered by rTsE vaccination protected enteral mucosa from larval intrusion, suppressed larval development and reduced female fecundity. The results indicate that TsE may represent a novel target molecule for anti-T. spiralis vaccines.


Asunto(s)
Proteínas del Helminto/farmacología , Inmunidad Humoral , Elastasa Pancreática/farmacología , Trichinella spiralis/efectos de los fármacos , Triquinelosis/prevención & control , Vacunación/veterinaria , Animales , Femenino , Fertilidad , Proteínas del Helminto/administración & dosificación , Ratones , Ratones Endogámicos BALB C , Elastasa Pancreática/administración & dosificación , Trichinella spiralis/fisiología , Triquinelosis/parasitología
12.
Vet Res ; 51(1): 125, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32988413

RESUMEN

The aim of this study was to investigate the biological characteristics and functions of a Trichinella spiralis serine proteinase (TsSerp) during larval invasion and development in the host. The full-length TsSerp cDNA sequence was cloned and expressed in Escherichia coli BL21. The results of RT-PCR, IFA and western blotting analyses showed that TsSerp was a secretory protein that was highly expressed at the T. spiralis intestinal infective larva and muscle larva stages and primarily located at the cuticle, stichosome and intrauterine embryos of the parasite. rTsSerp promoted the larval invasion of intestinal epithelial cells (IECs) and the enteric mucosa, whereas an anti-rTsSerp antibody impeded larval invasion; the promotion and obstruction roles were dose-dependently related to rTsSerp and the anti-rTsSerp antibodies, respectively. Vaccination of mice with rTsSerp elicited a remarkable humoral immune response (high levels of serum IgG, IgG1/IgG2a, IgE and IgM), and it also triggered both systemic (spleen) and local intestinal mucosal mesenteric lymph node (MLN) cellular immune responses, as demonstrated by a significant elevation in Th1 cytokines (IFN-γ) and Th2 cytokines (IL-4) after the spleen and MLN cells from vaccinated mice were stimulated with rTsSerp. Anti-TsSerp antibodies participated in the killing and destruction of newborn larvae via ADCC. The mice vaccinated with rTsSerp exhibited a 48.7% reduction in intestinal adult worms and a 52.5% reduction in muscle larvae. These results indicated that TsSerp participates in T. spiralis invasion and development in the host and might be considered a potential candidate target antigen to develop oral polyvalent preventive vaccines against Trichinella infection.


Asunto(s)
Proteínas del Helminto/genética , Inmunidad Celular , Inmunidad Humoral , Serina Proteasas/genética , Trichinella spiralis/genética , Secuencia de Aminoácidos , Animales , Femenino , Proteínas del Helminto/química , Proteínas del Helminto/inmunología , Ratones , Ratones Endogámicos BALB C , Filogenia , Alineación de Secuencia/veterinaria , Serina Proteasas/química , Serina Proteasas/inmunología , Trichinella spiralis/enzimología
13.
Vet Res ; 51(1): 111, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32891183

RESUMEN

In our previous studies, a novel T. spiralis peptidase (TsP) was identified among the excretory/secretory (ES) proteins of T. spiralis intestinal infective larvae (IIL) and T. spiralis at the adult worm (AW) stage using immunoproteomics, but the biological function of TsP in the life cycle of T. spiralis is not clear. The objective of this study was to investigate the biological properties and functions of TsP in larval intrusion and protective immunity induced by immunization with rTsP. The complete TsP cDNA sequence was cloned and expressed. The results of RT-PCR, indirect immunofluorescence assay (IIFA) and western blotting revealed that TsP is a surface and secretory protein expressed in T. spiralis at different stages (muscle larvae, IIL, AWs and newborn larvae) that is principally localized at the epicuticle of the nematode. rTsP facilitated the larval intrusion of intestinal epithelial cells (IECs) and intestinal mucosa, whereas anti-rTsP antibodies suppressed larval intrusion; these facilitative and suppressive roles were dose-dependently related to rTsP or anti-rTsP antibodies. Immunization of mice with rTsP triggered an obvious humoral immune response (high levels of IgG, IgG1/IgG2a, and sIgA) and also elicited systemic (spleen) and intestinal local mucosal (mesenteric lymph node) cellular immune responses, as demonstrated by an evident increase in the cytokines IFN-γ and IL-4. Immunization of mice with rTsP reduced the numbers of intestinal adult worms by 38.6% and muscle larvae by 41.93%. These results demonstrate that TsP plays a vital role in the intrusion, development and survival of T. spiralis in hosts and is a promising candidate target molecule for anti-Trichinella vaccines.


Asunto(s)
Proteínas del Helminto/genética , Inmunización/veterinaria , Péptido Hidrolasas/inmunología , Trichinella spiralis/genética , Vacunas/inmunología , Animales , Femenino , Proteínas del Helminto/metabolismo , Ratones , Ratones Endogámicos BALB C , Péptido Hidrolasas/genética , Trichinella spiralis/enzimología
14.
Vet Res ; 51(1): 78, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32539772

RESUMEN

A Trichinella spiralis aminopeptidase (TsAP) has been identified in intestinal infectious larvae (IIL) and adult worms (AW), but its biological function in the T. spiralis life cycle is unknown. The aim of this study was to characterize TsAP and ascertain its functions in the invasion, development and fecundity of T. spiralis. Recombinant TsAP (rTsAP) was expressed and purified. rTsAP has strong immunogenicity. qPCR and western blotting show that TsAP was transcribed and expressed at all T. spiralis lifecycle stages, but the expression level of TsAP mRNA and proteins at IIL and AW stages was obviously higher than those in muscle larvae (ML) and newborn larvae (NBL). The IFT results reveal that TsAP was principally located at the cuticle and the intrauterine embryos of this nematode. rTsAP had the enzymatic activity of natural aminopeptidase to hydrolyze the substrate Leu-pNA with an optimal temperature of 50 °C and optimal pH of 8.0. rTsAP promoted the larval penetration into intestinal epithelial cells, whereas anti-rTsAP antibodies suppressed the larval intrusion; the promotion and suppression was dose-dependently related to rTsAP or anti-rTsAP antibodies. TsAP protein expression level and enzymatic activity were reduced by 50.90 and 49.72% through silencing of the TsAP gene by specific siRNA 842. Intestinal AW and muscle larval burdens, worm length and female reproductive capacity were significantly declined in mice infected with siRNA-transfected ML compared to the control siRNA and PBS group. These results indicate that TsAP participates in the invasion, development and fecundity of T. spiralis and it might be a candidate target for anti-Trichinella vaccines.


Asunto(s)
Aminopeptidasas/genética , Proteínas del Helminto/genética , Enfermedades de los Porcinos/parasitología , Trichinella spiralis/fisiología , Triquinelosis/veterinaria , Aminopeptidasas/metabolismo , Animales , Femenino , Fertilidad/genética , Proteínas del Helminto/metabolismo , Ratones , Ratones Endogámicos BALB C , Sus scrofa , Porcinos , Trichinella spiralis/enzimología , Trichinella spiralis/genética , Trichinella spiralis/inmunología , Triquinelosis/parasitología
15.
Vet Res ; 50(1): 70, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31547875

RESUMEN

Molting is a key step for body-size expansion and environmental adaptation of parasitic nematodes, and it is extremely important for Trichinella spiralis growth and development, but the molting mechanism is not fully understood. In this work, label-free LC-MS/MS was used to determine the proteome differences between T. spiralis muscle larvae (ML) at the encapsulated stage and intestinal infective larvae (IIL) at the molting stage. The results showed that a total of 2885 T. spiralis proteins were identified, 323 of which were differentially expressed. These proteins were involved in cuticle structural elements, regulation of cuticle synthesis, remodeling and degradation, and hormonal regulation of molting. These differential proteins were also involved in diverse intracellular pathways, such as fatty acid biosynthesis, arachidonic acid metabolism, and mucin type O-glycan biosynthesis. qPCR results showed that five T. spiralis genes (cuticle collagen 14, putative DOMON domain-containing protein, glutamine synthetase, cathepsin F and NADP-dependent isocitrate dehydrogenase) had significantly higher transcriptional levels in 10 h IIL than ML (P < 0.05), which were similar to their protein expression levels, suggesting that they might be T. spiralis molting-related genes. Identification and characterization of T. spiralis molting-related proteins will be helpful for developing vaccines and new drugs against the early enteral stage of T. spiralis.


Asunto(s)
Proteínas del Helminto/genética , Muda/genética , Enfermedades de los Porcinos/parasitología , Trichinella spiralis/fisiología , Triquinelosis/veterinaria , Animales , Cromatografía Liquida/veterinaria , Femenino , Proteínas del Helminto/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Ratones , Proteómica , Organismos Libres de Patógenos Específicos , Sus scrofa , Porcinos , Enfermedades de los Porcinos/fisiopatología , Espectrometría de Masas en Tándem/veterinaria , Trichinella spiralis/genética , Trichinella spiralis/crecimiento & desarrollo , Triquinelosis/parasitología , Triquinelosis/fisiopatología
16.
Vet Res ; 50(1): 106, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31806006

RESUMEN

The binding and activation of host plasminogen (PLG) by worm surface enolases has been verified to participate in parasite invasion, but the role of this processes during Trichinella spiralis infection has not been clarified. Therefore, the expression and immunolocalization of a T. spiralis enolase (TsENO) and its binding activity with PLG were evaluated in this study. Based on the three-dimensional (3D) molecular model of TsENO, the protein interaction between TsENO and human PLG was analysed by the ZDOCK server. The interacting residues were identified after analysis of the protein-protein interface by bioinformatics techniques. The key interacting residues were confirmed by a series of experiments. The qPCR analysis results demonstrated that Ts-eno was transcribed throughout the whole life cycle of T. spiralis. The immunofluorescence assay (IFA) results confirmed that TsENO was distributed on the T. spiralis surface. The binding assays showed that recombinant TsENO (rTsENO) and native TsENO were able to bind PLG. Four lysine residues (90, 289, 291 and 300) of TsENO were considered to be active residues for PLG interaction. The quadruple mutant (Lys90Ala + Lys289Ala + Lys291Ala + Lys300Ala) TsENO, in which the key lysine residues were substituted with alanine (Ala) residues, exhibited a reduction in PLG binding of nearly 50% (45.37%). These results revealed that TsENO has strong binding activity with human PLG. The four lysine residues (90, 289, 291 and 300) of TsENO play an important role in PLG binding and could accelerate PLG activation and invasion of the host's intestinal wall by T. spiralis.


Asunto(s)
Proteínas del Helminto/genética , Fosfopiruvato Hidratasa/genética , Plasminógeno/fisiología , Trichinella spiralis/fisiología , Triquinelosis/inmunología , Animales , Femenino , Proteínas del Helminto/metabolismo , Humanos , Ratones , Ratones Endogámicos BALB C , Fosfopiruvato Hidratasa/metabolismo , Trichinella spiralis/genética , Triquinelosis/parasitología
17.
Parasitology ; 146(7): 947-955, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30859932

RESUMEN

The plerocercoid (sparganum) of Spirometra erinaceieuropaei is the main aetiological agent of human sparganosis. To improve the current knowledge on S. erinaceieuropaei evolution, we performed multi-locus microsatellite typing of sparganum isolates from China for the first time. All available expressed sequence tag (EST) sequences for the Spirometra were downloaded from the GenBank. The identification and localization of microsatellites in ESTs was accomplished by MISA. Based on the selected microsatellites, the genetic structure of 64 sparganum isolates collected from 11 geographical locations in southwest China were investigated through principal component analysis, STRUCTURE analysis and neighbour-joining clustering. A total of 522 non-redundant ESTs containing 915 simple sequence repeats were identified from 12 481 ESTs screened. Five primer pairs were finally selected. Using these loci, a total of 12 alleles were detected in 64 sparganum isolates. Little variability was observed within each of geographical population, especially among isolates derived from Kunming of Yunnan (YN-KM) province. Both STRUCTURE analysis and the clustering analysis supported that two genotypes existed among the sparganum isolates from southwest China. In conclusion, five microsatellite markers were successfully developed, and sparganum population was observed to harbour low genetic variation, further investigation with deeper sampling was needed to elucidate the population structure.


Asunto(s)
Etiquetas de Secuencia Expresada , Genética de Población , Repeticiones de Microsatélite , Plerocercoide/genética , Alelos , Animales , Anuros/parasitología , China , Marcadores Genéticos , Variación Genética , Genotipo , Filogenia , Serpientes/parasitología , Esparganosis
18.
Exp Parasitol ; 201: 1-10, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31004570

RESUMEN

The aim of this study was to observe the intestinal mucosal/systemic responses triggered by intranasal vaccination using recombinant Trichinella spiralis serine protease (rTsSP) and its capacity to elicit immune protection against larva challenge in a murine model. rTsSP coupled with cholera toxin B subunit (CTB) was used to vaccinate mice via intranasal route. The results revealed that intranasal vaccination with rTsSP plus CTB elicited significantly intestinal local sIgA response and a TsSP-specific systemic antibody response in vaccinated mice. Furthermore, more goblet cells/acidic mucins and IgA-secreting cells were observed in jejunum from vaccinated mice. Anti-rTsSP immune serum strongly recognized the cuticle of various worm stages (muscle larva, intestinal infective larva and adult worm). The level of IFN-γ, IL-4 and IL-10 of rTsSP-vaccinated mice was significantly elevated relative to CTB and PBS control groups. The vaccinated mice exhibited a 71.10% adult reduction at 9 days pi and a 62.10% muscle larva reduction at 42 days pi following larva challenge. Additionally, vaccination with rTsSP also dampened intestinal T. spiralis development and decreased the female fecundity. Our results showed that intranasal vaccination using rTsSP adjuvanted with CTB triggered significantly local sIgA response and systemic concurrent Th1/Th2 response that induced an obvious protection against Trichinella infection.


Asunto(s)
Serina Proteasas/inmunología , Trichinella spiralis/inmunología , Administración Intranasal , Animales , Anticuerpos Antihelmínticos/sangre , Antígenos Helmínticos/administración & dosificación , Antígenos Helmínticos/inmunología , Citocinas/análisis , Duodeno/química , Duodeno/citología , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Células Caliciformes/química , Sueros Inmunes/inmunología , Inmunoglobulina A/sangre , Inmunoglobulina A Secretora/análisis , Inmunoglobulina A Secretora/metabolismo , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Masculino , Mesenterio , Ratones , Ratones Endogámicos BALB C , Mucinas/aislamiento & purificación , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Serina Proteasas/administración & dosificación , Organismos Libres de Patógenos Específicos , Bazo/citología , Bazo/inmunología , Trichinella spiralis/enzimología
19.
Parasitol Res ; 118(7): 2247-2255, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31081529

RESUMEN

In a previous study, immunoproteomics was used to identify a serine protease inhibitor (TsSPI) of T. spiralis excretory/secretory (ES) proteins that exhibited an inhibitory effect on trypsin enzymatic activity, but the precise role of TsSPI on worm infection and development in its host is not well understood. The objective of the present study was to use RNA interference to ascertain the function of TsSPI in larval invasion and growth. TsSPI-specific small interference RNAs (siRNAs) were delivered to muscle larvae (ML) to silence TsSPI expression by electroporation. Four days after electroporation, the ML transfected with 2 µM siRNA-653 exhibited a 75.75% decrease in TsSPI transcription and a 69.23% decrease in TsSPI expression compared with control ML. Although the silencing of TsSPI expression did not decrease worm viability, it significantly suppressed the larval invasion of intestinal epithelium cells (IEC) (P < 0.01), and the suppression was siRNA dose-dependent (r = 0.981). The infection of mice with siRNA-653-treated ML produced a 63.71% reduction of adult worms and a 72.38% reduction of muscle larvae. In addition, the length of the adults, newborn larvae, and ML and the fecundity of female T. spiralis from mice infected with siRNA-treated ML were obviously reduced relative to those in the control siRNA or PBS groups. These results indicated that the silencing of TsSPI by RNAi suppressed larval invasion and development and decreased female fecundity, further confirming that TsSPI plays a crucial role during the T. spiralis lifecycle and is a promising molecular target for anti-Trichinella vaccines.


Asunto(s)
Enfermedades Transmitidas por los Alimentos/prevención & control , ARN Interferente Pequeño/administración & dosificación , Inhibidores de Serina Proteinasa/genética , Trichinella spiralis/genética , Triquinelosis/prevención & control , Animales , Femenino , Fertilidad , Enfermedades Transmitidas por los Alimentos/inmunología , Enfermedades Transmitidas por los Alimentos/parasitología , Humanos , Mucosa Intestinal/inmunología , Larva , Ratones , Ratones Endogámicos BALB C , Músculos/parasitología , Proteómica , Interferencia de ARN , Inhibidores de Serina Proteinasa/metabolismo , Trichinella spiralis/crecimiento & desarrollo , Trichinella spiralis/inmunología , Trichinella spiralis/patogenicidad , Triquinelosis/inmunología , Triquinelosis/parasitología
20.
Vet Res ; 49(1): 79, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30068382

RESUMEN

The aim of this study was to study the molecular characteristics of Trichinella spiralis galectin (Tsgal) and interactions between Tsgal and host's intestinal epithelial cells (IECs). The functional domain of Tsgal was cloned and expressed in an E. coli system. The Tsgal was 97.1% identity to the galectin of T. nativa and 20.8% identity to the galectin-8 of humans. Conserved domain analysis revealed that Tsgal belongs to TR-type galectin and has two carbon recognized domain. The rTsgal with 29.1 kDa could be recognized by T. spiralis-infected mice at 42 days post-infection (dpi). The transcription and expression of Tsgal gene was detected by RT-PCR and Western blotting in all T. spiralis developmental stages (intestinal infective larvae, adult worms, newborn larvae, and muscle larvae). The IFA results revealed that Tsgal was mainly located at the cuticles and stichosomes of T. spiralis larvae (ML, IIL and NBL). The rTsgal had hemagglutinating function for erythrocytes from human, rabbit and mouse. The results of Far Western blot and confocal microscopy indicated there was specific binding between rTsgal and IECs, and the binding was located the membrane and cytoplasm of the IECs. Out of four sugars (sucrose, glucose, lactose and maltose), only lactose was able to inhibit the rTsgal agglutinating role for human type B erythrocytes. Moreover, the rTsgal could promote the larval invasion of IECs, while the anti-rTsgal serum inhibited the larval invasion. These results demonstrated that Tsgal might participate in the T. spiralis invasion of intestinal epithelium in early infection stage.


Asunto(s)
Galectinas/genética , Proteínas del Helminto/genética , Mucosa Intestinal/parasitología , Trichinella spiralis/fisiología , Triquinelosis/parasitología , Secuencia de Aminoácidos , Animales , Femenino , Galectinas/química , Galectinas/metabolismo , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Larva/crecimiento & desarrollo , Larva/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Filogenia , Alineación de Secuencia , Trichinella spiralis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda