Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Hum Reprod ; 37(4): 777-792, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35079788

RESUMEN

STUDY QUESTION: How does the human embryo breach the endometrial epithelium at implantation? SUMMARY ANSWER: Embryo attachment to the endometrial epithelium promotes the formation of multinuclear syncytiotrophoblast from trophectoderm, which goes on to breach the epithelial layer. WHAT IS KNOWN ALREADY: A significant proportion of natural conceptions and assisted reproduction treatments fail due to unsuccessful implantation. The trophectoderm lineage of the embryo attaches to the endometrial epithelium before breaching this barrier to implant into the endometrium. Trophectoderm-derived syncytiotrophoblast has been observed in recent in vitro cultures of peri-implantation embryos, and historical histology has shown invasive syncytiotrophoblast in embryos that have invaded beyond the epithelium, but the cell type mediating invasion of the epithelial layer at implantation is unknown. STUDY DESIGN, SIZE, DURATION: Fresh and frozen human blastocyst-stage embryos (n = 46) or human trophoblast stem cell (TSC) spheroids were co-cultured with confluent monolayers of the Ishikawa endometrial epithelial cell line to model the epithelial phase of implantation in vitro. Systems biology approaches with published transcriptomic datasets were used to model the epithelial phase of implantation in silico. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human embryos surplus to treatment requirements were consented for research. Day 6 blastocysts were co-cultured with Ishikawa cell layers until Day 8, and human TSC spheroids modelling blastocyst trophectoderm were co-cultured with Ishikawa cell layers for 48 h. Embryo and TSC morphology was assessed by immunofluorescence microscopy, and TSC differentiation by real-time quantitative PCR (RT-qPCR) and ELISA. Single-cell human blastocyst transcriptomes, and bulk transcriptomes of TSC and primary human endometrial epithelium were used to model the trophectoderm-epithelium interaction in silico. Hypernetworks, pathway analysis, random forest machine learning and RNA velocity were employed to identify gene networks associated with implantation. MAIN RESULTS AND THE ROLE OF CHANCE: The majority of embryos co-cultured with Ishikawa cell layers from Day 6 to 8 breached the epithelial layer (37/46), and syncytiotrophoblast was seen in all of these. Syncytiotrophoblast was observed at the embryo-epithelium interface before breaching, and syncytiotrophoblast mediated all pioneering breaching events observed (7/7 events). Multiple independent syncytiotrophoblast regions were seen in 26/46 embryos, suggesting derivation from different regions of trophectoderm. Human TSC spheroids co-cultured with Ishikawa layers also exhibited syncytiotrophoblast formation upon invasion into the epithelium. RT-qPCR comparison of TSC spheroids in isolated culture and co-culture demonstrated epithelium-induced upregulation of syncytiotrophoblast genes CGB (P = 0.03) and SDC1 (P = 0.008), and ELISA revealed the induction of hCGß secretion (P = 0.03). Secretory-phase primary endometrial epithelium surface transcriptomes were used to identify trophectoderm surface binding partners to model the embryo-epithelium interface. Hypernetwork analysis established a group of 25 epithelium-interacting trophectoderm genes that were highly connected to the rest of the trophectoderm transcriptome, and epithelium-coupled gene networks in cells of the polar region of the trophectoderm exhibited greater connectivity (P < 0.001) and more organized connections (P < 0.0001) than those in the mural region. Pathway analysis revealed a striking similarity with syncytiotrophoblast differentiation, as 4/6 most highly activated pathways upon TSC-syncytiotrophoblast differentiation (false discovery rate (FDR < 0.026)) were represented in the most enriched pathways of epithelium-coupled gene networks in both polar and mural trophectoderm (FDR < 0.001). Random forest machine learning also showed that 80% of the endometrial epithelium-interacting trophectoderm genes identified in the hypernetwork could be quantified as classifiers of TSC-syncytiotrophoblast differentiation. This multi-model approach suggests that invasive syncytiotrophoblast formation from both polar and mural trophectoderm is promoted by attachment to the endometrial epithelium to enable embryonic invasion. LARGE SCALE DATA: No omics datasets were generated in this study, and those used from previously published studies are cited. LIMITATIONS, REASONS FOR CAUTION: In vitro and in silico models may not recapitulate the dynamic embryo-endometrial interactions that occur in vivo. The influence of other cellular compartments in the endometrium, including decidual stromal cells and leukocytes, was not represented in these models. WIDER IMPLICATIONS OF THE FINDINGS: Understanding the mechanism of human embryo breaching of the epithelium and the gene networks involved is crucial to improve implantation success rates after assisted reproduction. Moreover, early trophoblast lineages arising at the epithelial phase of implantation form the blueprint for the placenta and thus underpin foetal growth trajectories, pregnancy health and offspring health. STUDY FUNDING/COMPETING INTEREST(S): This work was funded by grants from Wellbeing of Women, Diabetes UK, the NIHR Local Comprehensive Research Network and Manchester Clinical Research Facility, and the Department of Health Scientist Practitioner Training Scheme. None of the authors has any conflict of interest to declare.


Asunto(s)
Implantación del Embrión , Trofoblastos , Blastocisto/metabolismo , Implantación del Embrión/fisiología , Desarrollo Embrionario/genética , Endometrio/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , Embarazo
2.
Hum Reprod ; 36(10): 2661-2675, 2021 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-34517414

RESUMEN

STUDY QUESTION: Is the innate immunity system active in early human embryo development? SUMMARY ANSWER: The pattern recognition receptors and innate immunity Toll-like receptor (TLR) genes are widely expressed in preimplantation human embryos and the pathway appears to be active in response to TLR ligands. WHAT IS KNOWN ALREADY: Early human embryos are highly sensitive to their local environment, however relatively little is known about how embryos detect and respond to specific environmental cues. While the maternal immune response is known to be key to the establishment of pregnancy at implantation, the ability of human embryos to detect and signal the presence of pathogens is unknown. STUDY DESIGN, SIZE, DURATION: Expression of TLR family and related genes in human embryos was assessed by analysis of published transcriptome data (n = 40). Day 5 (D-5) human embryos (n = 25) were cultured in the presence of known TLR ligands and gene expression and cytokine production measured compared to controls. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human embryos surplus to treatment requirements were donated with informed consent from several ART centres. Embryos were cultured to Day 6 (D-6) in the presence of the TLR3 and TLR5 ligands Poly (I: C) and flagellin, with gene expression measured by quantitative PCR and cytokine release into medium measured using cytometric bead arrays. MAIN RESULTS AND THE ROLE OF CHANCE: TLR and related genes, including downstream signalling molecules, were expressed variably at all human embryo developmental stages. Results showed the strongest expression in the blastocyst for TLRs 9 and 5, and throughout development for TLRs 9, 5, 2, 6 and 7. Stimulation of Day 5 blastocysts with TLR3 and TLR5 ligands Poly (I: C) and flagellin produced changes in mRNA expression levels of TLR genes, including the hyaluronan-mediated motility receptor (HMMR), TLR5, TLR7, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and monocyte chemoattractant Protein-1 (MCP-1) (P < 0.05, P < 0.001 compared to unstimulated controls), and release into culture medium of cytokines and chemokines, notably IL8 (P = 0.00005 and 0.01277 for flagellin and Poly (I: C), respectively). LIMITATIONS, REASONS FOR CAUTION: This was a descriptive and experimental study which suggests that the TLR system is active in human embryos and capable of function, but does not confirm any particular role. Although we identified embryonic transcripts for a range of TLR genes, the expression patterns were not always consistent across published studies and expression levels of some genes were low, leaving open the possibility that these were expressed from the maternal rather than embryonic genome. WIDER IMPLICATIONS OF THE FINDINGS: This is the first report of the expression and activity of a number of components of the innate immunity TLR system in human embryos. Understanding the role of TLRs during preimplantation human development may be important to reveal immunological mechanisms and potential clinical markers of embryo quality and pregnancy initiation during natural conception and in ART. STUDY FUNDING/COMPETING INTEREST(S): This work was funded by the Ministry of Higher Education, The State of Libya, the UK Medical Research Council, and the NIHR Local Comprehensive Research Network and NIHR Manchester Clinical Research Facility and the European Union's Horizon 2020 Research and Innovation Programmes under the Marie Sklodowska-Curie Grant Agreement No. 812660 (DohART-NET). In accordance with H2020 rules, no new human embryos were sacrificed for research activities performed from the EU funding, which concerned only in silico analyses of recorded time-lapse and transcriptomics datasets. None of the authors has any conflict of interest to declare. TRIAL REGISTRATION NUMBER: n/a.


Asunto(s)
Blastocisto , Implantación del Embrión , Femenino , Humanos , Inmunidad Innata , Embarazo , Receptores Toll-Like/genética , Transcriptoma
3.
Front Endocrinol (Lausanne) ; 14: 1026187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36864831

RESUMEN

Background: Gene expression (GE) data have shown promise as a novel tool to aid in the diagnosis of childhood growth hormone deficiency (GHD) when comparing GHD children to normal children. The aim of this study was to assess the utility of GE data in the diagnosis of GHD in childhood and adolescence using non-GHD short stature children as a control group. Methods: GE data was obtained from patients undergoing growth hormone stimulation testing. Data were taken for the 271 genes whose expression was utilized in our previous study. The synthetic minority oversampling technique was used to balance the dataset and a random forest algorithm applied to predict GHD status. Results: 24 patients were recruited to the study and eight subsequently diagnosed with GHD. There were no significant differences in gender, age, auxology (height SDS, weight SDS, BMI SDS) or biochemistry (IGF-I SDS, IGFBP-3 SDS) between the GHD and non-GHD subjects. A random forest algorithm gave an AUC of 0.97 (95% CI 0.93 - 1.0) for the diagnosis of GHD. Conclusion: This study demonstrates highly accurate diagnosis of childhood GHD using a combination of GE data and random forest analysis.


Asunto(s)
Enanismo , Hormona del Crecimiento , Transcriptoma , Adolescente , Niño , Humanos , Grupos Control , Perfilación de la Expresión Génica , Hormona del Crecimiento/deficiencia
4.
Genes (Basel) ; 13(5)2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35627149

RESUMEN

The early developmental phase is of critical importance for human health and disease later in life. To decipher the molecular mechanisms at play, current biomedical research is increasingly relying on large quantities of diverse omics data. The integration and interpretation of the different datasets pose a critical challenge towards the holistic understanding of the complex biological processes that are involved in early development. In this review, we outline the major transcriptomic and epigenetic processes and the respective datasets that are most relevant for studying the periconceptional period. We cover both basic data processing and analysis steps, as well as more advanced data integration methods. A particular focus is given to network-based methods. Finally, we review the medical applications of such integrative analyses.


Asunto(s)
Investigación Biomédica , Transcriptoma , Epigénesis Genética , Epigenómica , Humanos , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda