Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 152(4): 743-54, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23415224

RESUMEN

Long noncoding RNAs (lncRNAs) are increasingly appreciated as regulators of cell-specific gene expression. Here, an enhancer-like lncRNA termed NeST (nettoie Salmonella pas Theiler's [cleanup Salmonella not Theiler's]) is shown to be causal for all phenotypes conferred by murine viral susceptibility locus Tmevp3. This locus was defined by crosses between SJL/J and B10.S mice and contains several candidate genes, including NeST. The SJL/J-derived locus confers higher lncRNA expression, increased interferon-γ (IFN-γ) abundance in activated CD8(+) T cells, increased Theiler's virus persistence, and decreased Salmonella enterica pathogenesis. Transgenic expression of NeST lncRNA alone was sufficient to confer all phenotypes of the SJL/J locus. NeST RNA was found to bind WDR5, a component of the histone H3 lysine 4 methyltransferase complex, and to alter histone 3 methylation at the IFN-γ locus. Thus, this lncRNA regulates epigenetic marking of IFN-γ-encoding chromatin, expression of IFN-γ, and susceptibility to a viral and a bacterial pathogen.


Asunto(s)
Susceptibilidad a Enfermedades , Epigénesis Genética , Interferón gamma/genética , ARN Largo no Codificante/genética , Animales , Linfocitos T CD8-positivos/inmunología , Infecciones por Cardiovirus/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infecciones por Salmonella/inmunología , Salmonella typhimurium/inmunología , Theilovirus/inmunología
2.
Cell ; 155(3): 621-35, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243019

RESUMEN

Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts. In contrast, Brn2 and Myt1l do not access fibroblast chromatin productively on their own; instead, Ascl1 recruits Brn2 to Ascl1 sites genome wide. A unique trivalent chromatin signature in the host cells predicts the permissiveness for Ascl1 pioneering activity among different cell types. Finally, we identified Zfp238 as a key Ascl1 target gene that can partially substitute for Ascl1 during iN cell reprogramming. Thus, a precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types.


Asunto(s)
Reprogramación Celular , Embrión de Mamíferos/citología , Fibroblastos/citología , Redes Reguladoras de Genes , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Fibroblastos/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factores del Dominio POU/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
3.
Nature ; 597(7878): 693-697, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34552240

RESUMEN

One of the hallmarks of the cerebral cortex is the extreme diversity of interneurons1-3. The two largest subtypes of cortical interneurons, parvalbumin- and somatostatin-positive cells, are morphologically and functionally distinct in adulthood but arise from common lineages within the medial ganglionic eminence4-11. This makes them an attractive model for studying the generation of cell diversity. Here we examine how developmental changes in transcription and chromatin structure enable these cells to acquire distinct identities in the mouse cortex. Generic interneuron features are first detected upon cell cycle exit through the opening of chromatin at distal elements. By constructing cell-type-specific gene regulatory networks, we observed that parvalbumin- and somatostatin-positive cells initiate distinct programs upon settling within the cortex. We used these networks to model the differential transcriptional requirement of a shared regulator, Mef2c, and confirmed the accuracy of our predictions through experimental loss-of-function experiments. We therefore reveal how a common molecular program diverges to enable these neuronal subtypes to acquire highly specialized properties by adulthood. Our methods provide a framework for examining the emergence of cellular diversity, as well as for quantifying and predicting the effect of candidate genes on cell-type-specific development.


Asunto(s)
Corteza Cerebral/citología , Epigénesis Genética , Redes Reguladoras de Genes , Interneuronas/citología , Neurogénesis , Animales , Diferenciación Celular , Movimiento Celular , Femenino , Factores de Transcripción MEF2/genética , Masculino , Ratones , Ratones Noqueados , Parvalbúminas/metabolismo , RNA-Seq , Análisis de la Célula Individual , Somatostatina/metabolismo
4.
Cell ; 145(3): 371-82, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21529711

RESUMEN

The ubiquitin-proteasome system catalyzes the degradation of intracellular proteins. Although ubiquitination of proteins determines their stabilities, there is growing evidence that proteasome function is also regulated. We report the functional characterization of a conserved proteasomal regulatory complex. We identified DmPI31 as a binding partner of the F box protein Nutcracker, a component of an SCF ubiquitin ligase (E3) required for caspase activation during sperm differentiation in Drosophila. DmPI31 binds Nutcracker via a conserved mechanism that is also used by mammalian FBXO7 and PI31. Nutcracker promotes DmPI31 stability, which is necessary for caspase activation, proteasome function, and sperm differentiation. DmPI31 can activate 26S proteasomes in vitro, and increasing DmPI31 levels suppresses defects caused by diminished proteasome activity in vivo. Furthermore, loss of DmPI31 function causes lethality, cell-cycle abnormalities, and defects in protein degradation, demonstrating that DmPI31 is physiologically required for normal proteasome activity.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Proteínas F-Box/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/genética , Caspasas/metabolismo , Línea Celular , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Proteoma/análisis , Alineación de Secuencia , Espermatogénesis , Testículo/metabolismo
5.
Nat Methods ; 14(6): 621-628, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28504679

RESUMEN

Approaches to differentiating pluripotent stem cells (PSCs) into neurons currently face two major challenges-(i) generated cells are immature, with limited functional properties; and (ii) cultures exhibit heterogeneous neuronal subtypes and maturation stages. Using lineage-determining transcription factors, we previously developed a single-step method to generate glutamatergic neurons from human PSCs. Here, we show that transient expression of the transcription factors Ascl1 and Dlx2 (AD) induces the generation of exclusively GABAergic neurons from human PSCs with a high degree of synaptic maturation. These AD-induced neuronal (iN) cells represent largely nonoverlapping populations of GABAergic neurons that express various subtype-specific markers. We further used AD-iN cells to establish that human collybistin, the loss of gene function of which causes severe encephalopathy, is required for inhibitory synaptic function. The generation of defined populations of functionally mature human GABAergic neurons represents an important step toward enabling the study of diseases affecting inhibitory synaptic transmission.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/fisiología , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/fisiología , Factores de Transcripción/genética , Animales , Ingeniería Celular , Células Cultivadas , Humanos , Ratones , Células Madre Pluripotentes/citología
6.
Nat Commun ; 11(1): 747, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029740

RESUMEN

ATAC-seq has become a leading technology for probing the chromatin landscape of single and aggregated cells. Distilling functional regions from ATAC-seq presents diverse analysis challenges. Methods commonly used to analyze chromatin accessibility datasets are adapted from algorithms designed to process different experimental technologies, disregarding the statistical and biological differences intrinsic to the ATAC-seq technology. Here, we present a Bayesian statistical approach that uses latent space models to better model accessible regions, termed ChromA. ChromA annotates chromatin landscape by integrating information from replicates, producing a consensus de-noised annotation of chromatin accessibility. ChromA can analyze single cell ATAC-seq data, correcting many biases generated by the sparse sampling inherent in single cell technologies. We validate ChromA on multiple technologies and biological systems, including mouse and human immune cells, establishing ChromA as a top performing general platform for mapping the chromatin landscape in different cellular populations from diverse experimental designs.


Asunto(s)
Cromatina/genética , Genómica/métodos , Modelos Genéticos , Algoritmos , Animales , Teorema de Bayes , Secuenciación de Inmunoprecipitación de Cromatina , Biblioteca de Genes , Humanos , Cadenas de Markov , Ratones , Anotación de Secuencia Molecular , Análisis de la Célula Individual
7.
Nat Cell Biol ; 22(4): 401-411, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32231311

RESUMEN

The on-target pioneer factors Ascl1 and Myod1 are sequence-related but induce two developmentally unrelated lineages-that is, neuronal and muscle identities, respectively. It is unclear how these two basic helix-loop-helix (bHLH) factors mediate such fundamentally different outcomes. The chromatin binding of Ascl1 and Myod1 was surprisingly similar in fibroblasts, yet their transcriptional outputs were drastically different. We found that quantitative binding differences explained differential chromatin remodelling and gene activation. Although strong Ascl1 binding was exclusively associated with bHLH motifs, strong Myod1-binding sites were co-enriched with non-bHLH motifs, possibly explaining why Ascl1 is less context dependent. Finally, we observed that promiscuous binding of Myod1 to neuronal targets results in neuronal reprogramming when the muscle program is inhibited by Myt1l. Our findings suggest that chromatin access of on-target pioneer factors is primarily driven by the protein-DNA interaction, unlike ordinary context-dependent transcription factors, and that promiscuous transcription factor binding requires specific silencing mechanisms to ensure lineage fidelity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína MioD/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Linaje de la Célula/genética , Reprogramación Celular , Cromatina/química , Cromatina/metabolismo , Embrión de Mamíferos , Fibroblastos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína MioD/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Motivos de Nucleótidos , Unión Proteica , Transducción de Señal , Factores de Transcripción/metabolismo , Transcripción Genética
8.
Elife ; 82019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644360

RESUMEN

Direct reprogramming of fibroblasts to neurons induces widespread cellular and transcriptional reconfiguration. Here, we characterized global epigenomic changes during the direct reprogramming of mouse fibroblasts to neurons using whole-genome base-resolution DNA methylation (mC) sequencing. We found that the pioneer transcription factor Ascl1 alone is sufficient for inducing the uniquely neuronal feature of non-CG methylation (mCH), but co-expression of Brn2 and Mytl1 was required to establish a global mCH pattern reminiscent of mature cortical neurons. Ascl1 alone induced promoter CG methylation (mCG) of fibroblast specific genes, while BAM overexpression additionally targets a competing myogenic program and directs a more faithful conversion to neuronal cells. Ascl1 induces local demethylation at its binding sites. Surprisingly, co-expression with Brn2 and Mytl1 inhibited the ability of Ascl1 to induce demethylation, suggesting a contextual regulation of transcription factor - epigenome interaction. Finally, we found that de novo methylation by DNMT3A is required for efficient neuronal reprogramming.


Asunto(s)
Reprogramación Celular/genética , Metilación de ADN/genética , Fibroblastos/citología , Neuronas/citología , Animales , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética
9.
Elife ; 82019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30628890

RESUMEN

Long noncoding RNAs (lncRNAs) have been shown to act as important cell biological regulators including cell fate decisions but are often ignored in human genetics. Combining differential lncRNA expression during neuronal lineage induction with copy number variation morbidity maps of a cohort of children with autism spectrum disorder/intellectual disability versus healthy controls revealed focal genomic mutations affecting several lncRNA candidate loci. Here we find that a t(5:12) chromosomal translocation in a family manifesting neurodevelopmental symptoms disrupts specifically lnc-NR2F1. We further show that lnc-NR2F1 is an evolutionarily conserved lncRNA functionally enhances induced neuronal cell maturation and directly occupies and regulates transcription of neuronal genes including autism-associated genes. Thus, integrating human genetics and functional testing in neuronal lineage induction is a promising approach for discovering candidate lncRNAs involved in neurodevelopmental diseases.


Asunto(s)
Trastorno del Espectro Autista/genética , Diferenciación Celular/genética , Mutación , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , ARN Largo no Codificante/genética , Trastorno del Espectro Autista/patología , Niño , Cromosomas Humanos Par 12/genética , Cromosomas Humanos Par 5/genética , Variaciones en el Número de Copia de ADN , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Trastornos del Neurodesarrollo/patología , Neurogénesis/genética , Neuronas/citología , Linaje , Translocación Genética/genética
10.
Cell Rep ; 20(13): 3236-3247, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28954238

RESUMEN

How transcription factors (TFs) reprogram one cell lineage to another remains unclear. Here, we define chromatin accessibility changes induced by the proneural TF Ascl1 throughout conversion of fibroblasts into induced neuronal (iN) cells. Thousands of genomic loci are affected as early as 12 hr after Ascl1 induction. Surprisingly, over 80% of the accessibility changes occur between days 2 and 5 of the 3-week reprogramming process. This chromatin switch coincides with robust activation of endogenous neuronal TFs and nucleosome phasing of neuronal promoters and enhancers. Subsequent morphological and functional maturation of iN cells is accomplished with relatively little chromatin reconfiguration. By integrating chromatin accessibility and transcriptome changes, we built a network model of dynamic TF regulation during iN cell reprogramming and identified Zfp238, Sox8, and Dlx3 as key TFs downstream of Ascl1. These results reveal a singular, coordinated epigenomic switch during direct reprogramming, in contrast to stepwise cell fate transitions in development.


Asunto(s)
Cromatina/metabolismo , Fibroblastos/metabolismo , Neuronas/metabolismo , Reprogramación Celular , Humanos
11.
Cell Rep ; 5(1): 3-12, 2013 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-24075995

RESUMEN

Long noncoding RNAs (lncRNAs) are thought to be prevalent regulators of gene expression, but the consequences of lncRNA inactivation in vivo are mostly unknown. Here, we show that targeted deletion of mouse Hotair lncRNA leads to derepression of hundreds of genes, resulting in homeotic transformation of the spine and malformation of metacarpal-carpal bones. RNA sequencing and conditional inactivation reveal an ongoing requirement of Hotair to repress HoxD genes and several imprinted loci such as Dlk1-Meg3 and Igf2-H19 without affecting imprinting choice. Hotair binds to both Polycomb repressive complex 2, which methylates histone H3 at lysine 27 (H3K27), and Lsd1 complex, which demethylates histone H3 at lysine 4 (H3K4) in vivo. Hotair inactivation causes H3K4me3 gain and, to a lesser extent, H3K27me3 loss at target genes. These results reveal the function and mechanisms of Hotair lncRNA in enforcing a silent chromatin state at Hox and additional genes.


Asunto(s)
Huesos/anomalías , Regulación del Desarrollo de la Expresión Génica , ARN Largo no Codificante/biosíntesis , ARN Largo no Codificante/genética , Animales , Desarrollo Óseo/genética , Huesos/embriología , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
12.
Cell Stem Cell ; 11(5): 689-700, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-23122292

RESUMEN

In adult stem cell lineages, progenitor cells commonly undergo mitotic transit amplifying (TA) divisions before terminal differentiation, allowing production of many differentiated progeny per stem cell division. Mechanisms that limit TA divisions and trigger the switch to differentiation may protect against cancer by preventing accumulation of oncogenic mutations in the proliferating population. Here we show that the switch from TA proliferation to differentiation in the Drosophila male germline stem cell lineage is mediated by translational control. The TRIM-NHL tumor suppressor homolog Mei-P26 facilitates accumulation of the differentiation regulator Bam in TA cells. In turn, Bam and its partner Bgcn bind the mei-P26 3' untranslated region and repress translation of mei-P26 in late TA cells. Thus, germ cells progress through distinct, sequential regulatory states, from Mei-P26 on/Bam off to Bam on/Mei-P26 off. TRIM-NHL homologs across species facilitate the switch from proliferation to differentiation, suggesting a conserved developmentally programmed tumor suppressor mechanism.


Asunto(s)
Células Madre Adultas/citología , Diferenciación Celular , Linaje de la Célula , Drosophila/citología , Regulación de la Expresión Génica , Células Madre Adultas/metabolismo , Animales , División Celular , ADN Helicasas/genética , ADN Helicasas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Masculino
13.
Trends Cell Biol ; 21(6): 354-61, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21550244

RESUMEN

A new class of transcripts, long noncoding RNAs (lncRNAs), has been recently found to be pervasively transcribed in the genome. Multiple lines of evidence increasingly link mutations and dysregulations of lncRNAs to diverse human diseases. Alterations in the primary structure, secondary structure, and expression levels of lncRNAs as well as their cognate RNA-binding proteins underlie diseases ranging from neurodegeneration to cancer. Recent progress suggests that the involvement of lncRNAs in human diseases could be far more prevalent than previously appreciated. We review the evidence linking lncRNAs to diverse human diseases and highlight fundamental concepts in lncRNA biology that still need to be clarified to provide a robust framework for lncRNA genetics.


Asunto(s)
ARN no Traducido/genética , Animales , Apoptosis , Epigénesis Genética , Humanos , Mutación , Biosíntesis de Proteínas , Empalme del ARN
14.
PLoS One ; 5(6): e11367, 2010 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-20614008

RESUMEN

BACKGROUND: Hydrodynamic injection is an effective method for DNA delivery in mouse liver and is being translated to larger animals for possible clinical use. Similarly, phiC31 integrase has proven effective in mediating long-term gene therapy in mice when delivered by hydrodynamic injection and is being considered for clinical gene therapy applications. However, chromosomal aberrations have been associated with phiC31 integrase expression in tissue culture, leading to questions about safety. METHODOLOGY/PRINCIPAL FINDINGS: To study whether hydrodynamic delivery alone, or in conjunction with delivery of phiC31 integrase for long-term transgene expression, could facilitate tumor formation, we used a transgenic mouse model in which sustained induction of the human C-MYC oncogene in the liver was followed by hydrodynamic injection. Without injection, mice had a median tumor latency of 154 days. With hydrodynamic injection of saline alone, the median tumor latency was significantly reduced, to 105 days. The median tumor latency was similar, 106 days, when a luciferase donor plasmid and backbone plasmid without integrase were administered. In contrast, when active or inactive phiC31 integrase and donor plasmid were supplied to the mouse liver, the median tumor latency was 153 days, similar to mice receiving no injection. CONCLUSIONS/SIGNIFICANCE: Our data suggest that phiC31 integrase does not facilitate tumor formation in this C-MYC transgenic mouse model. However, in groups lacking phiC31 integrase, hydrodynamic injection appeared to contribute to C-MYC-induced hepatocellular carcinoma in adult mice. Although it remains to be seen to what extent these findings may be extrapolated to catheter-mediated hydrodynamic delivery in larger species, they suggest that caution should be used during translation of hydrodynamic injection to clinical applications.


Asunto(s)
Carcinoma Hepatocelular/patología , Genes myc , Integrasas/metabolismo , Neoplasias Hepáticas Experimentales/patología , Animales , Secuencia de Bases , Carcinoma Hepatocelular/enzimología , Cartilla de ADN , Femenino , Neoplasias Hepáticas Experimentales/enzimología , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda