Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Immunity ; 45(1): 119-30, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27438769

RESUMEN

Type 1 interferons (IFNs) promote inflammation in the skin but the mechanisms responsible for inducing these cytokines are not well understood. We found that IFN-ß was abundantly produced by epidermal keratinocytes (KCs) in psoriasis and during wound repair. KC IFN-ß production depended on stimulation of mitochondrial antiviral-signaling protein (MAVS) by the antimicrobial peptide LL37 and double stranded-RNA released from necrotic cells. MAVS activated downstream TBK1 (TANK-Binding Kinase 1)-AKT (AKT serine/threonine kinase 1)-IRF3 (interferon regulatory factor 3) signaling cascade leading to IFN-ß production and then promoted maturation of dendritic cells. In mice, the production of epidermal IFN-ß by LL37 required MAVS, and human wounded and/or psoriatic skin showed activation of MAVS-associated IRF3 and induction of MAVS and IFN-ß gene signatures. These findings show that KCs are an important source of IFN-ß and MAVS is critical to this function, and demonstrates how the epidermis triggers unwanted skin inflammation under disease conditions.


Asunto(s)
Catelicidinas/metabolismo , Células Dendríticas/fisiología , Epidermis/patología , Queratinocitos/inmunología , Mitocondrias/metabolismo , Psoriasis/inmunología , Heridas y Lesiones/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Péptidos Catiónicos Antimicrobianos , Catelicidinas/genética , Diferenciación Celular , Células Cultivadas , Humanos , Interferón beta/metabolismo , Ratones , Ratones Noqueados , ARN Interferente Pequeño/genética , Transducción de Señal , Cicatrización de Heridas
2.
Br J Dermatol ; 190(1): 70-79, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672660

RESUMEN

BACKGROUND: Multiple treatment options are available for the management of psoriasis, but clinical response varies among individual patients and no biomarkers are available to facilitate treatment selection for improved patient outcomes. OBJECTIVES: To utilize retrospective data to conduct a pharmacogenetic study to explore the potential genetic pathways associated with drug response in the treatment of psoriasis. METHODS: We conducted a retrospective pharmacogenetic study using self-evaluated treatment response from 1942 genotyped patients with psoriasis. We examined 6 502 658 genetic markers to model their associations with response to six treatment options using linear regression, adjusting for cohort variables and demographic features. We further utilized an integrative approach incorporating epigenomics, transcriptomics and a longitudinal clinical cohort to provide biological implications for the topmost signals associated with drug response. RESULTS: Two novel markers were revealed to be associated with treatment response: rs1991820 (P = 1.30 × 10-6) for anti-tumour necrosis factor (TNF) biologics; and rs62264137 (P = 2.94 × 10-6) for methotrexate, which was also associated with cutaneous mRNA expression levels of two known psoriasis-related genes KLK7 (P = 1.0 × 10-12) and CD200 (P = 5.4 × 10-6). We demonstrated that KLK7 expression was increased in the psoriatic epidermis, as shown by immunohistochemistry, as well as single-cell RNA sequencing, and its responsiveness to anti-TNF treatment was highlighted. By inhibiting the expression of KLK7, we further illustrated that keratinocytes have decreased proinflammatory responses to TNF. CONCLUSIONS: Our study implicates the genetic regulation of cytokine responses in predicting clinical drug response and supports the association between pharmacogenetic loci and anti-TNF response, as shown here for KLK7.


Asunto(s)
Psoriasis , Humanos , Calicreínas/genética , Calicreínas/uso terapéutico , Farmacogenética , Pruebas de Farmacogenómica , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Psoriasis/patología , Estudios Retrospectivos , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Factor de Necrosis Tumoral alfa/genética
3.
J Allergy Clin Immunol ; 150(1): 114-130, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35085664

RESUMEN

BACKGROUND: Allergic contact dermatitis (CD) is a chronic inflammatory skin disease caused by type 1 biased adaptive immunity for which there is an unmet need for antigen (Ag)-specific immunotherapies. Exposure to skin sensitizers stimulates secretion of the proinflammatory neuropeptides substance P and hemokinin 1, which signal via the neurokinin-1 receptor (NK1R) to promote the innate and adaptive immune responses of CD. Accordingly, mice lacking the NK1R develop impaired CD. Nonetheless, the role and therapeutic opportunities of targeting the NK1R in CD remain to be elucidated. OBJECTIVE: We sought to develop an Ag-specific immunosuppressive approach to treat CD by skin codelivery of hapten and NK1R antagonists integrated in dissolvable microneedle arrays (MNA). METHODS: In vivo mouse models of contact hypersensitivity and ex vivo models of human skin were used to delineate the effects and mechanisms of NK1R signaling and the immunosuppressive effects of the contact sensitizer NK1R antagonist MNA in CD. RESULTS: We demonstrated in mice that CD requires NK1R signaling by substance P and hemokinin 1. Specific deletion of the NK1R in keratinocytes and dendritic cells, but not in mast cells, prevented CD. Skin codelivery of hapten or Ag MNA inhibited neuropeptide-mediated skin inflammation in mouse and human skin, promoted deletion of Ag-specific effector T cells, and increased regulatory T cells, which prevented CD onset and relapses locally and systemically in an Ag-specific manner. CONCLUSIONS: Immunoregulation by engineering localized skin neuroimmune networks can be used to treat cutaneous diseases that like CD are caused by type 1 immunity.


Asunto(s)
Dermatitis Alérgica por Contacto , Antagonistas del Receptor de Neuroquinina-1 , Animales , Dermatitis Alérgica por Contacto/tratamiento farmacológico , Haptenos , Ratones , Antagonistas del Receptor de Neuroquinina-1/farmacología , Receptores de Neuroquinina-1 , Sustancia P
4.
Infect Immun ; 87(8)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31109947

RESUMEN

Little is known about whether pathogen invasion of neural tissue is affected by immune-based mechanisms in endothelial cells. We examined the effects of endothelial cell CD40 on Toxoplasma gondii invasion of the retina and brain, organs seeded hematogenously. T. gondii circulates in the bloodstream within infected leukocytes (including monocytes and dendritic cells) and as extracellular tachyzoites. After T. gondii infection, mice that expressed CD40 restricted to endothelial cells exhibited diminished parasite loads and histopathology in the retina and brain. These mice also had lower parasite loads in the retina and brain after intravenous (i.v.) injection of infected monocytes or dendritic cells. The protective effect of endothelial cell CD40 was not explained by changes in cellular or humoral immunity, reduced transmigration of leukocytes into neural tissue, or reduced invasion by extracellular parasites. Circulating T. gondii-infected leukocytes (dendritic cells used as a model) led to infection of neural endothelial cells. The number of foci of infection in these cells were reduced if endothelial cells expressed CD40. Infected dendritic cells and macrophages expressed membrane-associated inducible Hsp70. Infected leukocytes triggered Hsp70-dependent autophagy in CD40+ endothelial cells and anti-T. gondii activity dependent on ULK1 and beclin 1. Reduced parasite load in the retina and brain not only required CD40 expression in endothelial cells but was also dependent on beclin 1 and the expression of inducible Hsp70 in dendritic cells. These studies suggest that during endothelial cell-leukocyte interaction, CD40 restricts T. gondii invasion of neural tissue through a mechanism that appears mediated by endothelial cell anti-parasitic activity stimulated by Hsp70.


Asunto(s)
Encéfalo/parasitología , Antígenos CD40/fisiología , Células Endoteliales/inmunología , Retina/parasitología , Toxoplasma/patogenicidad , Animales , Autofagia , Movimiento Celular , Proteínas HSP70 de Choque Térmico/fisiología , Leucocitos/fisiología , Ratones , Ratones Endogámicos C57BL
5.
J Immunol ; 198(2): 767-775, 2017 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-27920272

RESUMEN

The IL-17 family cytokines IL-17A and IL-17C drive the pathogenesis of psoriatic skin inflammation, and anti-IL-17A Abs were recently approved to treat human psoriasis. Little is known about mechanisms that restrain IL-17 cytokine-mediated signaling, particularly IL-17C. In this article, we show that the endoribonuclease MCP-1-induced protein 1 (MCPIP1; also known as regnase-1) is markedly upregulated in human psoriatic skin lesions. Similarly, MCPIP1 was overexpressed in the imiquimod (IMQ)-driven mouse model of cutaneous inflammation. Mice with an MCPIP1 deficiency (Zc3h12a+/-) displayed no baseline skin inflammation, but they showed exacerbated pathology following IMQ treatment. Pathology in Zc3h12a+/- mice was associated with elevated expression of IL-17A- and IL-17C-dependent genes, as well as with increased accumulation of neutrophils in skin. However, IL-17A and IL-17C expression was unaltered, suggesting that the increased inflammation in Zc3h12a+/- mice was due to enhanced downstream IL-17R signaling. Radiation chimeras demonstrated that MCPIP1 in nonhematopoietic cells is responsible for controlling skin pathology. Moreover, Zc3h12a+/-Il17ra-/- mice given IMQ showed almost no disease. To identify which IL-17RA ligand was essential, Zc3h12a+/-Il17a-/- and Zc3h12a+/-Il17c-/- mice were given IMQ; these mice had reduced but not fully abrogated pathology, indicating that MCPIP1 inhibits IL-17A and IL-17C signaling. Confirming this hypothesis, Zc3h12a-/- keratinocytes showed increased responsiveness to IL-17A and IL-17C stimulation. Thus, MCPIP1 is a potent negative regulator of psoriatic skin inflammation through IL-17A and IL-17C. Moreover, to our knowledge, MCPIP1 is the first described negative regulator of IL-17C signaling.


Asunto(s)
Dermatitis/inmunología , Psoriasis/inmunología , Ribonucleasas/inmunología , Factores de Transcripción/inmunología , Animales , Citometría de Flujo , Humanos , Inmunohistoquímica , Interleucina-17/inmunología , Queratinocitos/inmunología , Ratones , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
J Drugs Dermatol ; 17(10): 1127-1129, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30365595

RESUMEN

Herpes Labialis results from reactivation of latent herpes simplex virus (HSV-1 or HSV-2) harbored in the trigeminal ganglion during times of psychological stress, cutaneous injury or photo exposure. Following reactivation, the virus is anterogradely transported through axonal termini to the skin where the virus is released and replicates causing a clinical outbreak. Botulinum neurotoxin A (BoNTA) is known to inhibit presynaptic neuropeptide and neurotransmitter release. Whether it has the capacity to interfere with viral shedding and delivery into the skin remains unclear. We were interested in determining whether BoNTA could serve as a potential therapeutic or prophylactic treatment approach for frequent and severe HSV recurrences. We describe a clinical case report in which a patient successfully maintained a sustained absence of HSV outbreaks in regions where BoNTA was intradermally administered. BoNTA may offer a novel therapeutic approach for preventing recurrent HSV disease. J Drugs Dermatol. 2018;17(10):1127-1129.


Asunto(s)
Toxinas Botulínicas Tipo A/uso terapéutico , Herpes Labial/tratamiento farmacológico , Herpesvirus Humano 1 , Enfermedades de los Labios/tratamiento farmacológico , Neurotoxinas/uso terapéutico , Adulto , Toxinas Botulínicas Tipo A/administración & dosificación , Femenino , Herpes Labial/patología , Herpes Labial/virología , Humanos , Inyecciones Intradérmicas , Enfermedades de los Labios/patología , Enfermedades de los Labios/virología , Neurotoxinas/administración & dosificación , Recurrencia , Resultado del Tratamiento
7.
J Immunol ; 195(5): 2006-18, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26223654

RESUMEN

Psoriasis patients exhibit an increased risk of death by cardiovascular disease (CVD) and have elevated levels of circulating intermediate (CD14(++)CD16(+)) monocytes. This elevation could represent evidence of monocyte dysfunction in psoriasis patients at risk for CVD, as increases in circulating CD14(++)CD16(+) monocytes are predictive of myocardial infarction and death. An elevation in the CD14(++)CD16(+) cell population has been previously reported in patients with psoriatic disease, which has been confirmed in the cohort of our human psoriasis patients. CD16 expression was induced in CD14(++)CD16(-) classical monocytes following plastic adhesion, which also elicited enhanced ß2 but not ß1 integrin surface expression, suggesting increased adhesive capacity. Indeed, we found that psoriasis patients have increased monocyte aggregation among circulating PBMCs, which is recapitulated in the KC-Tie2 murine model of psoriasis. Visualization of human monocyte aggregates using imaging cytometry revealed that classical (CD14(++)CD16(-)) monocytes are the predominant cell type participating in these aggregate pairs. Many of these pairs also included CD16(+) monocytes, which could account for apparent elevations of intermediate monocytes. Additionally, intermediate monocytes and monocyte aggregates were the predominant cell type to adhere to TNF-α- and IL-17A-stimulated dermal endothelium. Ingenuity Pathway Analysis demonstrated that monocyte aggregates have a distinct transcriptional profile from singlet monocytes and monocytes following plastic adhesion, suggesting that circulating monocyte responses to aggregation are not fully accounted for by homotypic adhesion, and that further factors influence their functionality.


Asunto(s)
Dermatitis/inmunología , Monocitos/inmunología , Psoriasis/inmunología , Transcriptoma/inmunología , Adulto , Animales , Adhesión Celular/genética , Adhesión Celular/inmunología , Agregación Celular/genética , Agregación Celular/inmunología , Células Cultivadas , Enfermedad Crónica , Técnicas de Cocultivo , Dermatitis/sangre , Dermatitis/genética , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Femenino , Humanos , Queratinocitos/metabolismo , Receptores de Lipopolisacáridos/genética , Receptores de Lipopolisacáridos/inmunología , Receptores de Lipopolisacáridos/metabolismo , Masculino , Ratones Transgénicos , Microscopía Confocal , Persona de Mediana Edad , Monocitos/metabolismo , Psoriasis/sangre , Psoriasis/genética , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Receptores de IgG/genética , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Adulto Joven
8.
Mol Cell Proteomics ; 14(1): 109-19, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25351201

RESUMEN

Herein, we demonstrate the efficacy of an unbiased proteomics screening approach for studying protein expression changes in the KC-Tie2 psoriasis mouse model, identifying multiple protein expression changes in the mouse and validating these changes in human psoriasis. KC-Tie2 mouse skin samples (n = 3) were compared with littermate controls (n = 3) using gel-based fractionation followed by label-free protein expression analysis. 5482 peptides mapping to 1281 proteins were identified and quantitated: 105 proteins exhibited fold-changes ≥2.0 including: stefin A1 (average fold change of 342.4 and an average p = 0.0082; cystatin A, human ortholog); slc25a5 (average fold change of 46.2 and an average p = 0.0318); serpinb3b (average fold change of 35.6 and an average p = 0.0345; serpinB1, human ortholog); and kallikrein related peptidase 6 (average fold change of 4.7 and an average p = 0.2474; KLK6). We independently confirmed mouse gene expression-based increases of selected genes including serpinb3b (17.4-fold, p < 0.0001), KLK6 (9-fold, p = 0.002), stefin A1 (7.3-fold; p < 0.001), and slc25A5 (1.5-fold; p = 0.05) using qRT-PCR on a second cohort of animals (n = 8). Parallel LC/MS/MS analyses on these same samples verified protein-level increases of 1.3-fold (slc25a5; p < 0.05), 29,000-fold (stefinA1; p < 0.01), 322-fold (KLK6; p < 0.0001) between KC-Tie2 and control mice. To underscore the utility and translatability of our combined approach, we analyzed gene and protein expression levels in psoriasis patient skin and primary keratinocytes versus healthy controls. Increases in gene expression for slc25a5 (1.8-fold), cystatin A (3-fold), KLK6 (5.8-fold), and serpinB1 (76-fold; all p < 0.05) were observed between healthy controls and involved lesional psoriasis skin and primary psoriasis keratinocytes. Moreover, slc25a5, cystatin A, KLK6, and serpinB1 protein were all increased in lesional psoriasis skin compared with normal skin. These results highlight the usefulness of preclinical disease models using readily-available mouse skin and demonstrate the utility of proteomic approaches for identifying novel peptides/proteins that are differentially regulated in psoriasis that could serve as sources of auto-antigens or provide novel therapeutic targets for the development of new anti-psoriatic treatments.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas/metabolismo , Psoriasis/metabolismo , Piel/metabolismo , Animales , Expresión Génica , Humanos , Queratinocitos/metabolismo , Ratones , Proteínas/genética , Proteómica , Psoriasis/genética , Reproducibilidad de los Resultados
9.
Exp Dermatol ; 25(3): 187-93, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26519132

RESUMEN

To explore the role of amphiregulin in inflammatory epidermal hyperplasia, we overexpressed human AREG (hAREG) in FVB/N mice using a bovine K5 promoter. A construct containing AREG coding sequences flanked by 5' and 3' untranslated region sequences (AREG-UTR) led to a >10-fold increase in hAREG expression compared to an otherwise-identical construct containing only the coding region (AREG-CDR). AREG-UTR mice developed tousled, greasy fur as well as elongated nails and thickened, erythematous tail skin. No such phenotype was evident in AREG-CDR mice. Histologically, AREG-UTR mice presented with marked epidermal hyperplasia of tail skin (2.1-fold increase in epidermal thickness with a 9.5-fold increase in Ki-67(+) cells) accompanied by significantly increased CD4+ T-cell infiltration. Dorsal skin of AREG-UTR mice manifested lesser but still significant increases in epidermal thickness and keratinocyte hyperplasia. AREG-UTR mice also developed marked and significant sebaceous gland enlargement, with corresponding increases in Ki-67(+) cells. To determine the response of AREG-UTR animals to a pro-inflammatory skin challenge, topical imiquimod (IMQ) or vehicle cream was applied to dorsal and tail skin. IMQ increased dorsal skin thickness similarly in both AREG-UTR and wild type mice (1.7- and 2.2-fold vs vehicle, P < 0.001 each), but had no such effect on tail skin. These results confirm that keratinocyte expression of hAREG elicits inflammatory epidermal hyperplasia, and are consistent with prior reports of tail epidermal hyperplasia and increased sebaceous gland size in mice expressing human epigen.


Asunto(s)
Anfirregulina/genética , Anfirregulina/metabolismo , Piel/metabolismo , Regiones no Traducidas 3' , Regiones no Traducidas 5' , Animales , Bovinos , Epidermis/patología , Receptores ErbB/metabolismo , Homeostasis , Humanos , Hiperplasia/metabolismo , Inflamación , Ligandos , Ratones , Ratones Transgénicos , Fenotipo , Regiones Promotoras Genéticas , Glándulas Sebáceas/metabolismo
10.
J Immunol ; 192(12): 6053-61, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24829417

RESUMEN

The IL-1 family members IL-36α (IL-1F6), IL-36ß (IL-1F8), and IL-36γ (IL-1F9) and the receptor antagonist IL-36Ra (IL-1F5) constitute a novel signaling system that is poorly understood. We now show that these cytokines have profound effects on the skin immune system. Treatment of human keratinocytes with IL-36 cytokines significantly increased the expression of CXCL1, CXCL8, CCL3, CCL5, and CCL20, potent chemotactic agents for activated leukocytes, and IL-36α injected intradermally resulted in chemokine expression, leukocyte infiltration, and acanthosis of mouse skin. Blood monocytes, myeloid dendritic cells (mDC), and monocyte-derived DC (MO-DC) expressed IL-36R and responded to IL-36. In contrast, no direct effects of IL-36 on resting or activated human CD4(+) or CD8(+) T cells, or blood neutrophils, could be demonstrated. Monocytes expressed IL-1A, IL-1B, and IL-6 mRNA and IL-1ß and IL-6 protein, and mDC upregulated surface expression of CD83, CD86, and HLA-DR and secretion of IL-1ß and IL-6 after treatment with IL-36. Furthermore, IL-36α-treated MO-DC enhanced allogeneic CD4(+) T cell proliferation, demonstrating that IL-36 can stimulate the maturation and function of DC and drive T cell proliferation. These data indicate that IL-36 cytokines actively propagate skin inflammation via the activation of keratinocytes, APC, and, indirectly, T cells.


Asunto(s)
Movimiento Celular/inmunología , Células Dendríticas/inmunología , Dermatitis/inmunología , Interleucina-1/inmunología , Queratinocitos/inmunología , Monocitos/inmunología , Piel/inmunología , Aloinjertos , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Línea Celular , Proliferación Celular , Citocinas/inmunología , Células Dendríticas/patología , Dermatitis/patología , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Interleucina-1/farmacología , Queratinocitos/patología , Ratones , Monocitos/patología , Piel/patología , Trasplante de Piel
11.
J Transl Med ; 13: 382, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26675482

RESUMEN

BACKGROUND: Psoriasis patients exhibit an increased risk of atherothrombotic events, including myocardial infarction and stroke. Clinical evidence suggests that psoriasis patients with early onset and more severe disease have the highest risk for these co-morbidities, perhaps due to the extent of body surface involvement, subsequent levels of systemic inflammation, or chronicity of disease. We sought to determine whether acute or chronic skin-specific inflammation was sufficient to promote thrombosis. METHODS: We used two experimental mouse models of skin-specific inflammation generated in either an acute (topical Aldara application onto wild-type C57Bl/6 mice for 5 days) or chronic (a genetically engineered K5-IL-17C mouse model of psoriasiform skin inflammation) manner. Arterial thrombosis was induced using carotid artery photochemical injury (Rose Bengal-green light laser) and carotid artery diameters were measured post-clot formation. We also examined measures of clot formation including prothrombin (PT) and activated partial thromboplastin time (aPTT). Skin inflammation was examined histologically and we profiled plasma-derived lipids. The number of skin-draining lymph-node (SDLN) and splenic derived CD11b(+)Ly6C(high) pro-inflammatory monocytes and CD11b(+)Ly6G(+) neutrophils was quantified using multi-color flow cytometry. RESULTS: Mice treated with topical Aldara for 5 days had similar carotid artery thrombotic occlusion times to mice treated with vehicle cream (32.2 ± 3.0 vs. 31.4 ± 2.5 min, p = 0.97); in contrast, K5-IL-17C mice had accelerated occlusion times compared to littermate controls (15.7 ± 2.1 vs. 26.5 ± 3.5 min, p < 0.01) while carotid artery diameters were similar between all mice. Acanthosis, a surrogate measure of inflammation, was increased in both Aldara-treated and K5-IL-17C mice compared to their respective controls. Monocytosis, defined as elevated SDLN and/or splenic CD11b(+)Ly6C(high) cells, was significantly increased in both Aldara-treated (SDLN: 3.8-fold, p = 0.02; spleen: 2.0-fold, p < 0.01) and K5-IL-17C (SDLN: 3.4-fold, p = 0.02; spleen: 3.5-fold, p < 0.01) animals compared to controls while neutrophilia, defined as elevated SDLN and/or splenic CD11b(+)Ly6G(+) cells, was significantly increased in only the chronic K5-IL-17C model (SDLN: 11.6-fold, p = 0.02; spleen: 11.3-fold, p < 0.01). Plasma-derived lipid levels, PT and aPTT times showed no difference between the Aldara-treated mice or the K5-IL-17C mice and their respective controls. CONCLUSIONS: Chronic, but not acute, skin-specific inflammation was associated with faster arterial thrombotic occlusion. Increased numbers of splenic and SDLN monocytes were observed in both acute and chronic skin-specific inflammation, however, increased splenic and SDLN neutrophils were observed only in the chronic skin-specific inflammation model. Understanding the cellular response to skin-specific inflammation may provide insights into the cellular participants mediating the pathophysiology of major adverse cardiovascular events associated with psoriasis.


Asunto(s)
Modelos Animales de Enfermedad , Inflamación/fisiopatología , Psoriasis/complicaciones , Trombosis/complicaciones , Animales , Enfermedad Crónica , Inflamación/complicaciones , Ratones , Ratones Endogámicos C57BL
12.
Blood ; 121(10): 1690-700, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23305733

RESUMEN

Although unusual neutrophils expressing major histocompatibility complex class II (MHC II) and costimulatory molecules have been detected at inflammatory sites in mice and humans, their identity, origin, and function remain unclear. We have demonstrated that, when cultured with granulocyte macrophage-colony-stimulating factor, neutrophils can give rise to a unique hybrid population exhibiting dual phenotypic and functionality of neutrophils and dendritic cells (DCs). Here we report that hybrid cells expressing surface markers of neutrophils (Ly6G, L-selectin, CXC chemokines receptor 2, and 7/4) and DCs (CD11c, MHC II, CD80, and CD86) become detectable in the peritoneal cavity, skin, lung, and lymph nodes under inflammatory conditions. Importantly, 20% to 30% of the adoptively transferred neutrophils acquired CD11c and MHC II expression when recovered from inflammatory lesions, demonstrating neutrophil → hybrid conversion in living animals. Using Escherichia coli strains expressing green fluorescent protein and ovalbumin, we further show hybrids play dual protective roles by rapidly clearing bacteria and presenting bacterial antigens to CD4 T cells. These results indicate that some of the neutrophils recruited to inflammatory lesions can differentiate into neutrophil-DC hybrids, thus challenging the classic view of neutrophils as terminally differentiated leukocytes destined to die or to participate primarily in host innate immunity.


Asunto(s)
Células Dendríticas/fisiología , Modelos Animales de Enfermedad , Escherichia coli/patogenicidad , Células Híbridas/fisiología , Inflamación/inmunología , Neutrófilos/fisiología , Peritonitis/etiología , Animales , Presentación de Antígeno , Células Presentadoras de Antígenos/inmunología , Biomarcadores/metabolismo , Western Blotting , Diferenciación Celular , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/microbiología , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Citometría de Flujo , Proteínas Fluorescentes Verdes/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Células Híbridas/citología , Células Híbridas/microbiología , Inmunofenotipificación , Inflamación/microbiología , Inflamación/patología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/citología , Neutrófilos/microbiología , Peritonitis/metabolismo , Peritonitis/patología , Piel/inmunología , Piel/microbiología , Piel/patología
13.
J Immunol ; 190(5): 2252-62, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23359500

RESUMEN

IL-17C is a functionally distinct member of the IL-17 family that binds IL-17 receptor E/A to promote innate defense in epithelial cells and regulate Th17 cell differentiation. We demonstrate that IL-17C (not IL-17A) is the most abundant IL-17 isoform in lesional psoriasis skin (1058 versus 8 pg/ml; p < 0.006) and localizes to keratinocytes (KCs), endothelial cells (ECs), and leukocytes. ECs stimulated with IL-17C produce increased TNF-α and KCs stimulated with IL-17C/TNF-α produce similar inflammatory gene response patterns as those elicited by IL-17A/TNF-α, including increases in IL-17C, TNF-α, IL-8, IL-1α/ß, IL-1F5, IL-1F9, IL-6, IL-19, CCL20, S100A7/A8/A9, DEFB4, lipocalin 2, and peptidase inhibitor 3 (p < 0.05), indicating a positive proinflammatory feedback loop between the epidermis and ECs. Psoriasis patients treated with etanercept rapidly decrease cutaneous IL-17C levels, suggesting IL-17C/TNF-α-mediated inflammatory signaling is critical for psoriasis pathogenesis. Mice genetically engineered to overexpress IL-17C in KCs develop well-demarcated areas of erythematous, flakey involved skin adjacent to areas of normal-appearing uninvolved skin despite increased IL-17C expression in both areas (p < 0.05). Uninvolved skin displays increased angiogenesis and elevated S100A8/A9 expression (p < 0.05) but no epidermal hyperplasia, whereas involved skin exhibits robust epidermal hyperplasia, increased angiogenesis and leukocyte infiltration, and upregulated TNF-α, IL-1α/ß, IL-17A/F, IL-23p19, vascular endothelial growth factor, IL-6, and CCL20 (p < 0.05), suggesting that IL-17C, when coupled with other proinflammatory signals, initiates the development of psoriasiform dermatitis. This skin phenotype was significantly improved following 8 wk of TNF-α inhibition. These findings identify a role for IL-17C in skin inflammation and suggest a pathogenic function for the elevated IL-17C observed in lesional psoriasis skin.


Asunto(s)
Inflamación/genética , Interleucina-17/inmunología , Queratinocitos/metabolismo , Psoriasis/genética , Piel/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Adolescente , Adulto , Anciano , Animales , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Etanercept , Expresión Génica/efectos de los fármacos , Humanos , Inmunoglobulina G/farmacología , Inmunoglobulina G/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Interleucina-17/biosíntesis , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Cultivo Primario de Células , Psoriasis/tratamiento farmacológico , Psoriasis/inmunología , Psoriasis/patología , Receptores del Factor de Necrosis Tumoral/uso terapéutico , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Piel/patología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/biosíntesis
14.
J Drugs Dermatol ; 13(11): 1407-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25607710

RESUMEN

Use of botulinum neurotoxin A (BoNTA) for treating inflammatory skin disease is an underexplored area in medical dermatology. Preclinical mouse studies have demonstrated efficacy of abobotulinumtoxinA in improving psoriasiform skin inflammation. We describe sustained local clearance of a psoriasis plaque in a patient following a single off-label injection of intradermal abobotulinumtoxinA. BoNTA may offer a novel therapeutic approach for treating recalcitrant plaque psoriasis. Case reports and anecdotal evidence suggests that onabotulinumtoxinA may be useful for treating inverse psoriasis.1,2 We previously reported an improvement in skin phenotype in a preclinical mouse model following a single intradermal injection of abobotulinumtoxinA.3 Here we present a patient case report demonstrating efficacy of abobotulinumtoxinA in reversing plaque psoriasis.


Asunto(s)
Toxinas Botulínicas Tipo A/administración & dosificación , Fármacos Neuromusculares/administración & dosificación , Psoriasis/tratamiento farmacológico , Anciano , Femenino , Humanos , Inyecciones Intradérmicas , Uso Fuera de lo Indicado , Psoriasis/patología , Resultado del Tratamiento
15.
JCI Insight ; 9(8)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470486

RESUMEN

IL-17C is an epithelial cell-derived proinflammatory cytokine whose transcriptional regulation remains unclear. Analysis of the IL17C promoter region identified TCF4 as putative regulator, and siRNA knockdown of TCF4 in human keratinocytes (KCs) increased IL17C. IL-17C stimulation of KCs (along with IL-17A and TNF-α stimulation) decreased TCF4 and increased NFKBIZ and ZC3H12A expression in an IL-17RA/RE-dependent manner, thus creating a feedback loop. ZC3H12A (MCPIP1/Regnase-1), a transcriptional immune-response regulator, also increased following TCF4 siRNA knockdown, and siRNA knockdown of ZC3H12A decreased NFKBIZ, IL1B, IL36G, CCL20, and CXCL1, revealing a proinflammatory role for ZC3H12A. Examination of lesional skin from the KC-Tie2 inflammatory dermatitis mouse model identified decreases in TCF4 protein concomitant with increases in IL-17C and Zc3h12a that reversed following the genetic elimination of Il17c, Il17ra, and Il17re and improvement in the skin phenotype. Conversely, interference with Tcf4 in KC-Tie2 mouse skin increased Il17c and exacerbated the inflammatory skin phenotype. Together, these findings identify a role for TCF4 in the negative regulation of IL-17C, which, alone and with TNF-α and IL-17A, feed back to decrease TCF4 in an IL-17RA/RE-dependent manner. This loop is further amplified by IL-17C-TCF4 autocrine regulation of ZC3H12A and IL-17C regulation of NFKBIZ to promote self-sustaining skin inflammation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Interleucina-17 , Queratinocitos , Receptores de Interleucina-17 , Ribonucleasas , Transducción de Señal , Factor de Transcripción 4 , Animales , Factor de Transcripción 4/metabolismo , Factor de Transcripción 4/genética , Humanos , Interleucina-17/metabolismo , Interleucina-17/genética , Ratones , Queratinocitos/metabolismo , Ribonucleasas/metabolismo , Ribonucleasas/genética , Receptores de Interleucina-17/metabolismo , Receptores de Interleucina-17/genética , Inflamación/metabolismo , Inflamación/genética , Modelos Animales de Enfermedad , Epidermis/metabolismo , Dermatitis/metabolismo , Dermatitis/genética , Dermatitis/inmunología , Dermatitis/patología , Retroalimentación Fisiológica , Regulación de la Expresión Génica
16.
Mol Vis ; 19: 1413-21, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23825921

RESUMEN

PURPOSE: The purpose of this study was to investigate (i) the effect of diabetes on retinal ganglion cell death in diabetic dogs and mice, (ii) the effect of prolonged glycemic control on diabetes-induced death of retinal ganglion cells, (iii) whether retinal ganglion cell death in diabetes is associated with degeneration of retinal capillaries, and (iv) the effect of diet on diabetes-induced degeneration of retinal ganglion cells in mice. METHODS: Diabetes was induced in dogs using streptozotocin, and levels of glycemic control (good, moderate, and poor) were maintained for 5 years. Diabetes was studied in two mouse models (diabetes induced in C57Bl/6J mice using streptozotocin and spontaneously diabetic Ins2Akita mice). Retinal ganglion cell death was investigated by counting the number of axons from the ganglion cells in the optic nerve and with terminal transferase deoxyuridine triphosphate nick-end labeling and annexin V staining in mice. RESULTS: As reported previously, the development and severity of vascular lesions of diabetic retinopathy in diabetic dogs were strongly associated with glycemic control. Loss of retinal ganglion cells was extensive in dogs kept in poor glycemic control, and was essentially prevented in diabetic dogs kept in good glycemic control for the 5 years of study. In contrast, "moderate" glycemic control (intermediate between poor and good glycemic control) caused a significant increase in vascular pathology, but did not cause loss of retinal axons in the optic nerve. Using this validated optic nerve axon counting method, the two mouse models of diabetic retinopathy were studied to assess ganglion cell death. Despite 10 months of diabetes (a duration that has been shown to cause retinal capillary degeneration in both models), neither mouse model showed loss of optic nerve axons (thus suggesting no loss of retinal ganglion cells). Likewise, other parameters of cell death (terminal transferase deoxyuridine triphosphate nick-end labeling and annexin V labeling) did not suggest ganglion cell death in diabetic C57Bl/6J mice, and ganglion cell death was not increased by a different commercial diet. CONCLUSIONS: Retinal ganglion cell death in diabetic dogs is significantly inhibited by good or even moderate glycemic control. The finding that diabetic dogs in moderate glycemic control had appreciable vascular disease without apparent retinal ganglion cell degeneration does not support the postulate that neural degeneration causes the vascular pathology. Studies of diabetic mice in our colony again fail to find evidence of ganglion cell death due to prolonged diabetes in this species.


Asunto(s)
Capilares/patología , Diabetes Mellitus Experimental/patología , Hiperglucemia/complicaciones , Degeneración Retiniana/complicaciones , Degeneración Retiniana/patología , Células Ganglionares de la Retina/patología , Vasos Retinianos/patología , Animales , Axones/patología , Axones/ultraestructura , Capilares/metabolismo , Diabetes Mellitus Experimental/complicaciones , Perros , Hiperglucemia/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Nervio Óptico/patología , Nervio Óptico/ultraestructura , Células Ganglionares de la Retina/metabolismo , Vasos Retinianos/metabolismo
17.
Cytokine ; 62(2): 195-201, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23562549

RESUMEN

Psoriasis is a prevalent, chronic inflammatory disease of the skin mediated by cross-talk occurring between epidermal keratinocytes, dermal vascular cells and immunocytes, including activated antigen presenting cells (APCs), monocytes/macrophages, and Th1 and Th17 cells. Increased proliferation of keratinocytes and endothelial cells in conjunction with immune cell infiltration leads to the distinct epidermal and vascular hyperplasia that is characteristic of lesional psoriatic skin. Interaction of activated T cells with monocytes/macrophages occurs via the Th17/IL-23 axis and is crucial for maintaining the chronic inflammation. Recent epidemiological evidence has demonstrated that psoriasis patients have an increased risk of developing and dying of cardiovascular disease. Similar pathology between psoriasis and cardiovascular disease, including involvement of key immunologic cell populations together with release of common inflammatory mediators such as IL-17A suggest a mechanistic link between the two diseases. This review will focus on concepts critical to psoriasis pathogenesis, systemic manifestations of psoriasis, the role of IL-17 in psoriasis and cardiovascular disease and the potential role for IL-17 in mediating cardiovascular co-morbidities in psoriasis patients.


Asunto(s)
Enfermedades Cardiovasculares/inmunología , Interleucina-17/metabolismo , Psoriasis/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Enfermedades Cardiovasculares/complicaciones , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Humanos , Inflamación/inmunología , Queratinocitos/inmunología , Queratinocitos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Psoriasis/complicaciones , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/inmunología , Células Th17/metabolismo
18.
J Immunol ; 186(4): 2613-22, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21242515

RESUMEN

IL-1F6, IL-1F8, and IL-1F9 and the IL-1R6(RP2) receptor antagonist IL-1F5 constitute a novel IL-1 signaling system that is poorly characterized in skin. To further characterize these cytokines in healthy and inflamed skin, we studied their expression in healthy control, uninvolved psoriasis, and psoriasis plaque skin using quantitative RT-PCR and immunohistochemistry. Expression of IL-1F5, -1F6, -1F8, and -1F9 were increased 2 to 3 orders of magnitude in psoriasis plaque versus uninvolved psoriasis skin, which was supported immunohistologically. Moreover, treatment of psoriasis with etanercept led to significantly decreased IL-1F5, -1F6, -1F8, and -1F9 mRNAs, concomitant with clinical improvement. Similarly increased expression of IL-1F5, -1F6, -1F8, and -1F9 was seen in the involved skin of two mouse models of psoriasis. Suggestive of their importance in inflamed epithelia, IL-1α and TNF-α induced IL-1F5, -1F6, -1F8, and -1F9 transcript expression by normal human keratinocytes. Microarray analysis revealed that these cytokines induce the expression of antimicrobial peptides and matrix metalloproteinases by reconstituted human epidermis. In particular, IL-1F8 increased mRNA expression of human ß-defensin (HBD)-2, HBD-3, and CAMP and protein secretion of HBD-2 and HBD-3. Collectively, our data suggest important roles for these novel cytokines in inflammatory skin diseases and identify these peptides as potential targets for antipsoriatic therapies.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/biosíntesis , Interleucina-1/fisiología , Interleucinas/fisiología , Queratinocitos/inmunología , Queratinocitos/metabolismo , Psoriasis/inmunología , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Epidermis/enzimología , Epidermis/inmunología , Epidermis/patología , Regulación Enzimológica de la Expresión Génica/inmunología , Humanos , Interleucina-1/genética , Queratinocitos/enzimología , Metaloproteinasas de la Matriz/biosíntesis , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Psoriasis/metabolismo , Psoriasis/patología , Adulto Joven
19.
Nat Commun ; 14(1): 3455, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308489

RESUMEN

The immunopathogenesis of psoriasis, a common chronic inflammatory disease of the skin, is incompletely understood. Here we demonstrate, using a combination of single cell and spatial RNA sequencing, IL-36 dependent amplification of IL-17A and TNF inflammatory responses in the absence of neutrophil proteases, which primarily occur within the supraspinous layer of the psoriatic epidermis. We further show that a subset of SFRP2+ fibroblasts in psoriasis contribute to amplification of the immune network through transition to a pro-inflammatory state. The SFRP2+ fibroblast communication network involves production of CCL13, CCL19 and CXCL12, connected by ligand-receptor interactions to other spatially proximate cell types: CCR2+ myeloid cells, CCR7+ LAMP3+ dendritic cells, and CXCR4 expressed on both CD8+ Tc17 cells and keratinocytes, respectively. The SFRP2+ fibroblasts also express cathepsin S, further amplifying inflammatory responses by activating IL-36G in keratinocytes. These data provide an in-depth view of psoriasis pathogenesis, which expands our understanding of the critical cellular participants to include inflammatory fibroblasts and their cellular interactions.


Asunto(s)
Queratinocitos , Psoriasis , Humanos , Piel , Fibroblastos , Células Epidérmicas
20.
Skin Res Technol ; 18(2): 225-31, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22092854

RESUMEN

BACKGROUND: Non-invasive methods are desirable for longitudinal studies examining drug efficacy and disease resolution defined as decreases in epidermal thickness in mouse models of psoriasiform skin disease. This would eliminate the need for either sacrificing animals or collecting serial skin biopsies to evaluate changes in disease progression during an individual study. The quantitation of epidermal thickness using optical coherence tomography (OCT) provides an alternative to traditional histology techniques. METHODS: Using the KC-Tie2 doxycycline-repressible psoriasiform skin disease mouse model, OCT imaging was completed on diseased back skin of adult KC-Tie2 (n = 3-4) and control (n = 3-4) mice, followed immediately by the surgical excision of the same region for histologic analyses. Animals were then treated with doxycycline to suppress transgene expression and to reverse the skin disease and additional OCT images and tissues were collected 2 and 4 weeks following. Epidermal thickness was measured using OCT and histology. RESULTS: Optical coherence tomography and histology both demonstrated that KC-Tie2 mice had significantly thicker epidermis (~4-fold; P < 0.0001) than control animals. By 2 weeks following gene repression, decreases in epidermal thickness were observed using both OCT and histology, and were sustained through 4 weeks. Correlation analyses between histology and OCT values at all time points and in all animals revealed high significance (R(2) = 0.78); with correlation being highest in KC-Tie2 mice (R(2) = 0.92) compared to control animals (R(2) = 0.16). CONCLUSION: Non-invasive OCT imaging provided similar values as those collected using standard histologic measures in thick skin of KC-Tie2 mice but became less reliable in thinner control mouse skin, possibly reflecting limitations in resolution of OCT. Future advances in resolution of OCT may improve and allow greater accuracy of epidermal thickness measurements.


Asunto(s)
Dermatitis/patología , Epidermis/patología , Psoriasis/patología , Tomografía de Coherencia Óptica/métodos , Animales , Antibacterianos/farmacología , Biopsia , Enfermedad Crónica , Dermatitis/genética , Modelos Animales de Enfermedad , Doxiciclina/farmacología , Expresión Génica/efectos de los fármacos , Queratinocitos/patología , Estudios Longitudinales , Ratones , Ratones Mutantes , Psoriasis/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptor TIE-2 , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Tomografía de Coherencia Óptica/normas , Transgenes/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda