Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36298430

RESUMEN

Dry electrodes for electroencephalography (EEG) allow new fields of application, including telemedicine, mobile EEG, emergency EEG, and long-term repetitive measurements for research, neurofeedback, or brain-computer interfaces. Different dry electrode technologies have been proposed and validated in comparison to conventional gel-based electrodes. Most previous studies have been performed at a single center and by single operators. We conducted a multi-center and multi-operator study validating multipin dry electrodes to study the reproducibility and generalizability of their performance in different environments and for different operators. Moreover, we aimed to study the interrelation of operator experience, preparation time, and wearing comfort on the EEG signal quality. EEG acquisitions using dry and gel-based EEG caps were carried out in 6 different countries with 115 volunteers, recording electrode-skin impedances, resting state EEG and evoked activity. The dry cap showed average channel reliability of 81% but higher average impedances than the gel-based cap. However, the dry EEG caps required 62% less preparation time. No statistical differences were observed between the gel-based and dry EEG signal characteristics in all signal metrics. We conclude that the performance of the dry multipin electrodes is highly reproducible, whereas the primary influences on channel reliability and signal quality are operator skill and experience.


Asunto(s)
Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Reproducibilidad de los Resultados , Electrodos , Impedancia Eléctrica
2.
Sci Rep ; 13(1): 16589, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789022

RESUMEN

Dry electroencephalography (EEG) electrodes provide rapid, gel-free, and easy EEG preparation, but with limited wearing comfort. We propose a novel dry electrode comprising multiple tilted pins in a flower-like arrangement. The novel Flower electrode increases wearing comfort and contact area while maintaining ease of use. In a study with 20 volunteers, we compare the performance of a novel 64-channel dry Flower electrode cap to a commercial dry Multipin electrode cap in sitting and supine positions. The wearing comfort of the Flower cap was rated as significantly improved both in sitting and supine positions. The channel reliability and average impedances of both electrode systems were comparable. Averaged VEP components showed no considerable differences in global field power amplitude and latency, as well as in signal-to-noise ratio and topography. No considerable differences were found in the power spectral density of the resting state EEGs between 1 and 40 Hz. Overall, our findings provide evidence for equivalent channel reliability and signal characteristics of the compared cap systems in the sitting and supine positions. The reliability, signal quality, and significantly improved wearing comfort of the Flower electrode allow new fields of applications for dry EEG in long-term monitoring, sensitive populations, and recording in supine position.


Asunto(s)
Clavos Ortopédicos , Electroencefalografía , Humanos , Reproducibilidad de los Resultados , Electrodos , Impedancia Eléctrica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda