Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Geophys Res Lett ; 41(24): 8713-8721, 2014 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26074645

RESUMEN

During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.

2.
Sci Rep ; 12(1): 21717, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36522393

RESUMEN

Chorus waves play a key role in outer Van Allen electron belt dynamics through cyclotron resonance. Here, we use Van Allen Probes data to reveal a new and distinct population of intense chorus waves excited in the heart of the radiation belt during the main phase of geomagnetic storms. The power of the waves is typically ~ 2-3 orders of magnitude greater than pre-storm levels, and are generated when fluxes of ~ 10-100 keV electrons approach or exceed the Kennel-Petschek limit. These intense chorus waves rapidly scatter electrons into the loss cone, capping the electron flux to a value close to the limit predicted by Kennel and Petschek over 50 years ago. Our results are crucial for understanding the limits to radiation belt fluxes, with accurate models likely requiring the inclusion of this chorus wave-driven flux-limiting process, that is independent of the acceleration mechanism or source responsible for enhancing the flux.


Asunto(s)
Gastrópodos , Corazón , Animales , Ciclotrones , Aceleración , Electrones
3.
Nat Commun ; 9(1): 4806, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442968

RESUMEN

During geomagnetic substorms, stored magnetic and plasma thermal energies are explosively converted into plasma kinetic energy. This rapid reconfiguration of Earth's nightside magnetosphere is manifest in the ionosphere as an auroral display that fills the sky. Progress in understanding of how substorms are initiated is hindered by a lack of quantitative analysis of the single consistent feature of onset; the rapid brightening and structuring of the most equatorward arc in the ionosphere. Here, we exploit state-of-the-art auroral measurements to construct an observational dispersion relation of waves during substorm onset. Further, we use kinetic theory of high-beta plasma to demonstrate that the shear Alfven wave dispersion relation bears remarkable similarity to the auroral dispersion relation. In contrast to prevailing theories of substorm initiation, we demonstrate that auroral beads seen during the majority of substorm onsets are likely the signature of kinetic Alfven waves driven unstable in the high-beta magnetotail.


Asunto(s)
Radiación Electromagnética , Gases em Plasma/análisis , Planeta Tierra , Humanos , Análisis Espacio-Temporal
4.
J Geophys Res Space Phys ; 121(7): 6292-6306, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27656336

RESUMEN

Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV "seed" population into the inner magnetosphere which is subsequently energized through wave-particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1-3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM-H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels.

5.
J Geophys Res Space Phys ; 120(10): 8503-8516, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27867792

RESUMEN

We present the first multievent study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near-Earth plasma instability which causes the substorm onset arc. Using data from ground-based auroral imagers, we study repeatable signatures of along-arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near-Earth plasma sheet. We show that the growth and spatial scales of these wave-like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wave number with the most unstable spatial scales mapping to an azimuthal wavelength λ≈ 1700-2500 km in the equatorial magnetosphere at around 9-12 RE . We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the Cross-Field Current Instability and the Shear Flow Ballooning Instability. We conclude that, although the Cross-Field Current instability can generate similar magnitude of growth rates, the range of unstable wave numbers indicates that the Shear Flow Ballooning Instability is the most likely explanation for our observations.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda