Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Inorg Chem ; 48(16): 7962-9, 2009 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-19627136

RESUMEN

The fluorination of La(2)CuO(4) was achieved for the first time under normal conditions of pressure and temperature (1 MPa and 298 K) via electrochemical insertion in organic fluorinated electrolytes and led to lanthanum oxyfluorides of general formula La(2)CuO(4)F(x). Analyses showed that, underneath a very thin layer of LaF(3) (a few atomic layers), fluorine is effectively inserted in the material's structure. The fluorination strongly modifies the lanthanum environment, whereas very little modification is observed on copper, suggesting an insertion in the La(2)O(2) blocks of the structure. In all cases, fluorine insertion breaks the translation symmetry and introduces a long-distance disorder, as shown by electron spin resonance. These results highlight the efficiency of electrochemistry as a new "chimie douce" type fluorination technique for solid-state materials. Performed at room temperature, it additionally does not require any specific experimental care. The choice of the electrolytic medium is crucial with regard to the fluorine insertion rate as well as the material deterioration. Successful application of this technique to the well-known La(2)CuO(4) material provides a basis for further syntheses from other oxides.

4.
Chem Asian J ; 4(6): 881-885, 2009 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-19308962

RESUMEN

During our exploration of compounds in the Sn(II)-Ti(IV)-O system, we discovered that hydrolysis of titanium alkoxide solution in the presence of Sn(II) salts resulted in stable deep-yellow colored anatase nanoparticles. The samples were characterized by X-ray powder diffraction, electron microprobe, thermal analysis, transmission electron microscopy, and (119)Sn Mössbauer spectroscopy. Mössbauer data of the yellow colored samples showed the presence of both Sn(II) and Sn(IV) in a distorted environment as expected in the anatase structure. It is suggested that the cationic charge imbalance is compensated by oxygen vacancies and/or hydroxyl groups as evidenced by Mössbauer data which show two types of Sn(II) environments. When heated in air to 300 degrees C the samples changed color to completely white and (119)Sn Mössbauer data of these samples showed only the presence of Sn(IV). These observations indicate that the origin of the yellow color in our Sn doped anatase nanoparticles arises from filled Sn 5s states just above the O 2p band, thus decreasing the band gap. The Sn(II) doped anatase TiO(2) nanoparticles reported here can potentially lead to environmentally benign yellow pigments. The simplistic nature of the synthetic procedure could easily be adapted to large-scale industrial manufacture.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda