RESUMEN
We evaluated the feasibility of co-digesting molasses wastewater and sewage sludge in a two-stage hydrogen- and methane-producing system. The highest energy was recovered at the 21-h hydraulic retention time (HRT) of the first hydrogenic reactor and at 56-h HRT of the secondary methanogenic reactor. Hence, the two-stage system recovered 1,822 kJ from 1 L of the mixed wastes (19.7: hydrogenic reactor plus, 1,802 kJ L(-1): methanogenic reactor). Despite the overloaded VFA-run with a short HRT of 56 h, the GAC-CH4 reactor increased methane production rate and yields due to enhanced pH buffer capacity. An RNA-based community analysis showed that the Ethanoligenens and Methanosaeta dominated the hydrogen and methane bioreactor, respectively. The two-stage system of co-digesting molasses and sewage sludge is particularly cost-effective due to non-pretreatment of sewage sludge.
Asunto(s)
Bacterias Anaerobias/metabolismo , Biocombustibles , Reactores Biológicos , Melaza , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Contaminantes del Agua/química , Acetatos/química , Hidrógeno/química , Residuos Industriales , Metano/química , ARN/química , Análisis de Secuencia de ARN , Temperatura , Aguas Residuales , Purificación del AguaRESUMEN
A potential source contribution function (PSCF) can indicate the source areas of high air pollutant concentrations using backward trajectories. However, the conventional two-dimensional PSCF (2D-PSCF) cannot consider the emission and transport height of air pollutants. That missing information might be critical because injection height varies depending on the source type, such as with biomass burning. We developed a simple algorithm to account for the height of trajectories with high concentrations and combined it with the conventional PSCF to devise 3D-PSCF. We demonstrate the applicability of the 3D-PSCF by applying it to particulate PAH data collected from September 2006 to August 2007 in Seoul. We found variation in the results from 3D-PSCF with threshold heights from 3,000 to 1,500 m. Applying 2,000 m as the threshold height in the PSCF calculation most clearly determined the possible source areas of air pollutants from biomass fuel burning that were affecting the air quality in Seoul.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Biomasa , Monitoreo del Ambiente/métodos , SeúlRESUMEN
Co-digesting molasses wastewater and sewage sludge was evaluated for hydrogen production by response surface methodology (RSM). Batch experiments in accordance with various dilution ratios (40- to 5-fold) and waste mixing composition ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100, on a volume basis) were conducted. Volatile solid (VS) concentration strongly affected the hydrogen production rate and yield compared with the waste mixing ratio. The specific hydrogen production rate was predicted to be optimal when the VS concentration ranged from 10 to 12 g/l at all the mixing ratios of molasses wastewater and sewage sludge. A hydrogen yield of over 50 ml H2/g VS(removed) was obtained from mixed waste of 10% sewage sludge and 10 g/l VS (about 10-fold dilution ratio). The optimal chemical oxygen demand/ total nitrogen ratio for co-digesting molasses wastewater and sewage sludge was between 250 and 300 with a hydrogen yield above 20 ml H2/g VS(removed).