RESUMEN
BACKGROUND: Deep brain stimulation of the anterior limb of the internal capsule (ALIC)/nucleus accumbens is an effective treatment in patients with obsessive-compulsive disorder but may increase impulsive behavior. We aimed to investigate how active stimulation alters subdomains of impulsive decision making and whether respective effects depend on the location of stimulation sites. METHODS: We assessed 15 participants with obsessive-compulsive disorder performing the Cambridge Gambling Task during active and inactive ALIC/nucleus accumbens deep brain stimulation. Specifically, we determined stimulation-induced changes in risk adjustment and delay aversion. To characterize underlying neural pathways, we computed probabilistic stimulation maps and applied fiber filtering based on normative structural connectivity data to identify "hot" and "cold" spots/fibers related to changes in impulsive decision making. RESULTS: Active stimulation significantly reduced risk adjustment while increasing delay aversion, both implying increased impulsive decision making. Changes in risk adjustment were robustly associated with stimulation sites located in the central ALIC and fibers connecting the thalamus and subthalamic nucleus with the medial and lateral prefrontal cortex. Both hot spots and fibers for changes in risk adjustment were robust to leave-one-out cross-validation. Changes in delay aversion were similarly associated with central ALIC stimulation, but validation hereof was nonsignificant. CONCLUSIONS: Our findings provide experimental evidence that ALIC/nucleus accumbens stimulation increases impulsive decision making in obsessive-compulsive disorder. We show that changes in risk adjustment depend on the location of stimulation volumes and affected fiber bundles. The relationship between impulsive decision making and long-term clinical outcomes requires further investigation.
Asunto(s)
Estimulación Encefálica Profunda , Trastorno Obsesivo Compulsivo , Humanos , Núcleo Accumbens/fisiología , Cápsula Interna , Estimulación Encefálica Profunda/efectos adversos , Conducta Impulsiva , Trastorno Obsesivo Compulsivo/terapia , Toma de DecisionesRESUMEN
The occurrence of tics in Tourette syndrome (TS) has often been linked to impaired cognitive control, but empirical findings are still inconclusive. A recent view proposes that tics may be the result of an abnormally strong interrelation between perceptual processes and motor actions, commonly referred to as perception-action binding. The general aim of the present study was to examine proactive control and binding effects in the context of task switching in adult human patients with TS and matched healthy controls. A cued task switching paradigm was employed in 24 patients (18 male, 6 female) and 25 controls while recording electroencephalography (EEG). Residue iteration decomposition (RIDE) was applied to analyze cue-locked proactive cognitive control and target-locked binding processes. Behavioral task switching performance was unaltered in patients with TS. A cue-locked parietal switch positivity, reflecting proactive control processes involved in the reconfiguration of the new task did not differ between groups. Importantly, target-locked fronto-central (N2) and parietal (P3) modulations, reflecting binding processes between perception and action, differed between groups. Underlying neurophysiological processes were best depicted after temporal decomposition of the EEG signal. The present results argue for unaltered proactive control but altered perception-action binding processes in the context of task switching, supporting the view that the integration of perception and action is processed differently in patients TS. Future studies should further investigate the specific conditions under which binding may be altered in TS and the influence of top-down processes, such as proactive control, on bindings.
Asunto(s)
Tics , Síndrome de Tourette , Adulto , Humanos , Masculino , Femenino , Electroencefalografía , Cognición/fisiología , Señales (Psicología)RESUMEN
Background: Extended research has pointed to the efficacy of deep brain stimulation (DBS) in treatment of patients with treatment-refractory Tourette syndrome (TS). The four most commonly used DBS targets for TS include the centromedian nucleus-nucleus ventrooralis internus (CM-Voi) and the centromedian nucleus-parafascicular (CM-Pf) complexes of the thalamus, and the posteroventrolateral (pvIGPi) and the anteromedial portion of the globus pallidus internus (amGPi). Differences and commonalities between those targets need to be compared systematically. Objective: Therefore, we evaluated whether DBS is effective in reducing TS symptoms and target-specific differences. Methods: A PubMed literature search was conducted according to the PRISMA guidelines. Eligible literature was used to conduct a systematic review and meta-analysis. Results: In total, 65 studies with 376 patients were included. Overall, Yale Global Tic Severity Scale (YGTSS) scores were reduced by more than 50 in 69% of the patients. DBS also resulted in significant reductions of secondary outcome measures, including the total YGTSS, modified Rush Video-Based Tic Rating Scale (mRVRS), Yale-Brown Obsessive Compulsive Scale (YBOCS), and Becks Depression Inventory (BDI). All targets resulted in significant reductions of YGTSS scores and, with the exception of the CM-Pf, also in reduced YBOCS scores. Interestingly, DBS of pallidal targets showed increased YGTSS and YBOCS reductions compared to thalamic targets. Also, the meta-analysis including six randomized controlled and double-blinded trials demonstrated clinical efficacy of DBS for TS, that remained significant for GPi but not thalamic stimulation in two separate meta-analyses. Conclusion: We conclude that DBS is a clinically effective treatment option for patients with treatment-refractory TS, with all targets showing comparable improvement rates. Future research might focus on personalized and symptom-specific target selection.